Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 14(5): 1939-1955, 2024.
Article in English | MEDLINE | ID: mdl-38505601

ABSTRACT

Rationale: Cancer continues to be a significant public health issue. Traditional treatments such as surgery, radiotherapy, and chemotherapy often fall short because of intrinsic issues such as lack of specificity and poor drug delivery, leading to insufficient drug concentration at the tumor site and/or potential side effects. Consequently, improving the delivery of conventional chemotherapy drugs like doxorubicin (DOX) is crucial for their therapeutic efficacy. Successful cancer treatment is achieved when regulated cell death (RCD) of cancer cells, which includes apoptotic and non-apoptotic processes such as ferroptosis, is fundamental to successful cancer treatment. The developing field of nanozymes holds considerable promise for innovative cancer treatment approaches. Methods: A dual-metallic nanozyme system encapsulated with DOX was created, derived from metal-organic frameworks (MOFs), designed to combat tumors by depleting glutathione (GSH) and concurrently liberating DOX. The initial phase of the study examined the GSH oxidase-mimicking function of the dimetallic nanozyme (ZIF-8/SrSe) through enzyme kinetic assays and Density Functional Theory (DFT) simulations. Following this, we probed the ability of ZIF-8/SrSe@DOX to release DOX in response to the tumor microenvironment in vitro, alongside examining its anticancer capabilities and mechanisms prompting apoptosis or ferroptosis in cancer cells. Moreover, we established tumor-bearing animal models to corroborate the anti-tumor effectiveness of our nanozyme complex and to identify the involved apoptotic and ferroptotic pathways implicated. Results: Enzyme kinetic analyses demonstrated that the ZIF-8/SrSe nanozyme exhibits substantial GSH oxidase-like activity, effectively oxidizing reduced GSH to glutathione disulfide (GSSG), while also inhibiting glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). This inhibition led to an imbalance in iron homeostasis, pronounced caspase activation, and subsequent induction of apoptosis and ferroptosis in tumor cells. Additionally, the ZIF-8/SrSe@DOX nanoparticles efficiently delivered DOX, causing DNA damage and further promoting apoptotic and ferroptotic pathways. Conclusions: This research outlines the design of a novel platform that combines chemotherapeutic agents with a Fenton reaction catalyst, offering a promising strategy for cancer therapy that leverages the synergistic effects of apoptosis and ferroptosis.


Subject(s)
Ferroptosis , Neoplasms , Regulated Cell Death , Animals , Apoptosis , Drug Delivery Systems , Glutathione , Glutathione Disulfide , Doxorubicin/pharmacology , Oxidoreductases , Cell Line, Tumor , Neoplasms/drug therapy , Tumor Microenvironment
2.
Cancers (Basel) ; 15(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37370781

ABSTRACT

(1) Background: Chromatin structure typing has been used for prognostic risk stratification among cancer survivors. This study aimed to ascertain the prognostic values of ploidy, nucleotyping, and tumor-stroma ratio (TSR) in predicting disease progression for patients with early-stage non-small cell lung cancer (NSCLC), and to explore whether patients with different nucleotyping profiles can benefit from adjuvant chemotherapy. (2) Methods: DNA ploidy, nucleotyping, and TSR were measured by chromatin structure typing analysis (Matrix Analyser, Room4, Kent, UK). Cox proportional hazard regression models were used to assess the relationships of DNA ploidy, nucleotyping, and TSR with a 5-year disease-free survival (DFS). (3) Results: among 154 early-stage NSCLC patients, 102 were non-diploid, 40 had chromatin heterogeneity, and 126 had a low stroma fraction, respectively. Univariable analysis suggested that non-diploidy was associated with a significantly lower 5-year DFS rate. After combining DNA ploidy and nucleotyping for risk stratification and adjusting for potential confounders, the DNA ploidy and nucleotyping (PN) high-risk group and PN medium-risk group had a 4- (95% CI: 1.497-8.754) and 3-fold (95% CI: 1.196-6.380) increase in the risk of disease progression or mortality within 5 years of follow-up, respectively, compared to the PN low-risk group. In PN high-risk patients, adjuvant therapy was associated with a significantly improved 5-year DFS (HR = 0.214, 95% CI: 0.048-0.957, p = 0.027). (4) Conclusions: the non-diploid DNA status and the combination of ploidy and nucleotyping can be useful prognostic indicators to predict long-term outcomes in early-stage NSCLC patients. Additionally, NSCLC patients with non-diploidy and chromatin homogenous status may benefit from adjuvant therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...