Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
J Voice ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772832

ABSTRACT

OBJECTIVES: The objective of this study was to assess voice changes in patients with nasopharyngeal carcinoma (NPC) using subjective and objective assessment tools and to make inferences regarding the underlying pathological causes for different phases of radiotherapy (RT). METHODS: A total of 187 (123 males and 64 females) patients with post-RT NPC with no recurrence of malignancy or other voice diseases and 17 (11 males and 6 females) healthy individuals were included in this study. The patients were equally divided into 11 groups according to the number of years after RT. The acoustic analyses, GRBAS (grade, roughness, breathiness, asthenia, and strain) scales, and Voice Handicap Index (VHI)-10 scores were collected and analyzed. RESULTS: The fundamental frequency (F0) parameters in years 1 and 2 and year 11 were significantly lower in patients with NPC than in healthy individuals. The maximum phonation times in years 1 and 11 were significantly shorter than those in healthy individuals. The jitter parameters were significantly different between year 1 and from years 8 to 11 and the healthy individuals. The shimmer parameters were significantly different between years 1, from years 9 to 11, and healthy individuals. Hoarseness was the most prominent problem compared to other items of the GRBAS. The VHI-10 scores were significantly different between years 1 and 2 and year 11 after RT in patients with NPC. CONCLUSIONS: Voice quality was worse in the first 2 years and from years 8 to 11 but remained relatively normal from years 3 to 7 after RT. Patient-reported voice handicaps began during year 3 after RT. The most prominent problem was perceived hoarseness, which was evident in the first 2 years and from years 9 to 11 after RT. The radiation-induced mucous edema, laryngeal intrinsic muscle fibrosis, nerve injuries, upper respiratory tract changes, and decreased lung capacity might be the pathological reasons for voice changes in post-RT patients with NPC.

2.
J Voice ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631941

ABSTRACT

OBJECTIVE: This study explored electrophysiological changes in the laryngeal motor neuropathway and determined whether lesions in the laryngeal motor cortex (LMC) and its descending tract contribute to voice deterioration and peripheral nerve palsy in patients with nasopharyngeal carcinoma (NPC) postradiotherapy (RT). STUDY DESIGNS: Prospective cohort study. METHODS: Twenty-two patients with NPC at 2 to 4years post-RT (8 female and 14 male), 22 patients with NPC at 8 to 10years post-RT (8 female and 14 male), and 22 healthy individuals (9 female and 13 male) were selected to test their magnetic evoked potentials (MEP), motor nerve conduction, and voice quality using transcranial magnetic stimulation, laryngeal electromyography, and the XION DiVAS acoustic analysis software. Three groups were matched according to approximate age. Multiple comparisons were performed among the three groups. RESULTS: The voice quality of post-RT patients with NPC deteriorated compared to that of healthy individuals. Bilateral LMC and their corticonuclear tracts to the bilateral ambiguous nuclei of post-RT patients with NPC were impaired according to multigroup comparisons of MEP amplitudes, latencies, and resting motor thresholds. The vagus and recurrent laryngeal nerves (RLN) of post-RT patients with NPC were impaired according to multigroup comparisons of the amplitude and latencies of the compound muscle action potential and latencies of f-waves. CONCLUSIONS: The voice quality of patients with NPC deteriorated after RT. The pathogenesis of post-RT voice deterioration may involve radiation-induced injuries to the vagus, RLN, and bilateral LMC. Furthermore, radiation-induced injuries to the bilateral LMC may contribute to vagus and RLN palsies. These findings support the use of transcranial approaches to treating voice disorders and peripheral nerve palsies in post-RT patients with NPC. TRIAL REGISTRATION: ChiCTR2100054425; Electrophysiological Study of Vocal-Fold Mobility Disorders After Radiotherapy for NPC Patients via Magnetic Evoked Potential and Their Correlation with Voice Quality Assessment; https://www.chictr.org.cn/bin/project/edit?pid=144429.

3.
Mar Pollut Bull ; 202: 116409, 2024 May.
Article in English | MEDLINE | ID: mdl-38663343

ABSTRACT

We investigated spatial heterogeneity and diel variations in bacterioplankton and pico-nanoeukaryote communities, and potential biotic interactions at the extinction stage of the Ulva prolifera bloom in the Jiaozhou Bay, Yellow Sea. It was found that the presence of Ulva canopies significantly promoted the cell abundance of heterotrophic bacteria, raised evenness, and altered the community structure of bacterioplankton. A diel pattern was solely significant for pico-nanoeukaryote community structure. >50 % of variation in the heterotrophic bacterial abundance was accounted for by the ratio of Bacteroidota to Firmicutes, and dissolved organic nitrogen effectively explained the variations in cell abundances of phytoplankton populations. The factors representing biotic interactions frequently contributed substantially more than environmental factors in explaining the variations in diversity and community structure of both bacterioplankton and pico-nanoeukaryotes. There were higher proportions of eukaryotic pathogens compared to other marine systems, suggesting a higher ecological risk associated with the Ulva blooms.


Subject(s)
Bacteria , Eutrophication , Phytoplankton , Ulva , Plankton , Seaweed , Environmental Monitoring , China
4.
Environ Microbiol ; 26(3): e16615, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38501240

ABSTRACT

Microbial communities are commonly characterised through the metabarcoding of environmental DNA. This DNA originates from both viable (including dormant and active) and dead organisms, leading to recent efforts to distinguish between these states. In this study, we further these approaches by distinguishing not only between viable and dead cells but also between dormant and actively growing cells. This is achieved by sequencing both rRNA and rDNA, in conjunction with propidium monoazide cross-linked rDNA, to partition the active, dormant and relic fractions in environmental samples. We apply this method to characterise the diversity and assemblage structure of these fractions of microeukaryotes in intertidal sediments during a wet-dry-rewet incubation cycle. Our findings indicate that a significant proportion of microeukaryotic phylotypes detected in the total rDNA pools originate from dormant and relic microeukaryotes in the sediments, both in terms of richness (dormant, 13 ± 2%; relic, 47 ± 5%) and read abundance (dormant, 20 ± 7%; relic, 14 ± 5%). The richness and sequence proportion of dormant microeukaryotes notably increase during the transition from wet to dry conditions. Statistical analyses suggest that the dynamics of diversity and assemblage structure across different activity fractions are influenced by various environmental drivers. Our strategy offers a versatile approach that can be adapted to characterise other microbes in a wide range of environments.


Subject(s)
Microbiota , Microbiota/genetics , DNA, Ribosomal/genetics
5.
Prep Biochem Biotechnol ; : 1-12, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334942

ABSTRACT

This study aims to establish a method for purifying total flavonoids in roses using macroporous resin columns, intending to leverage and harness their potential. We screened six macroporous resins to evaluate their capacity for their adsorption and desorption, ultimately identifying X5 macroporous resin as the most effective. To comprehensively understand the adsorption behavior, we analyzed it using various models, such as pseudo-first-order and pseudo-second-order kinetic models, particle diffusion models, and Langmuir, Freundlich, and Temkin isotherm models. Employing both single-factor and uniform design, approaches, the focus of this work was on maximizing the total flavonoid recovery rate. A 3-factor and 10-level uniform design table was utilized for optimizing the optimal process parameters and exploring the antioxidant properties of the purified flavonoids. The optimal process conditions for purifying total flavonoids from roses can be summarized as follows: a sample concentration of 2 mg/mL, pH at 2, 55 mL sample volume, eluent ethanol concentration of 75%, eluent volume of 5 BV, and the elution rate set at 1 mL/min. Following purification, the total flavonoid content peaked at 57.82%, achieving an 84.93% recovery rate, signifying substantial antioxidant potential. Consequently, the method established for purifying TFR using X5 macroporous resin in this study proves to be a dependable and reliable method consistent approach.

6.
J Cardiovasc Pharmacol ; 83(2): 173-182, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38032897

ABSTRACT

ABSTRACT: As the pathogenesis of arterial thrombosis often includes platelet adhesion and aggregation, antiplatelet agents are commonly used to prevent thromboembolic events. Here, a new microfluidic method without additional adhesion protein modification was developed to quantify the inhibitory effect of antiplatelet drugs on the adhesion and aggregation behavior of platelets on glass surfaces under physiological flow conditions. Polydimethylsiloxane-glass microfluidic chips were fabricated by soft photolithography. Blood samples from healthy volunteers or patients before and after taking antiplatelet drugs flowed through the microchannels at wall shear rates of 300 and 1500 second -1 , respectively. The time to reach 2.5% platelet aggregation surface coverage (Ti), surface coverage (A 150s ), and mean fluorescence intensity (F 150s ) were used as quantitative indicators. Aspirin (80 µM) prolonged Ti and reduced F 150s . Alprostadil, ticagrelor, eptifibatide, and tirofiban prolonged Ti and reduced A 150s and F 150s in a concentration-dependent manner, whereas high concentrations of alprostadil did not completely inhibit platelet aggregation. Aspirin combined with ticagrelor synergistically inhibited platelet adhesion and aggregation; GPIb-IX-von Willebrand factor inhibitors partially inhibited platelet aggregation, and the inhibition was more pronounced at 1500 than at 300 second -1 . Patient administration of aspirin or (and) clopidogrel inhibited platelet adhesion and aggregation on the glass surface under flow conditions. This technology is capable of distinguishing the pharmacological effects of various antiplatelet drugs on inhibition of platelet adhesion aggregation on glass surface under physiological flow conditions, which providing a new way to develop microfluidic platelet function detection method without additional adhesive protein modification for determining the inhibitory effects of antiplatelet drugs in the clinical setting.


Subject(s)
Microfluidics , Platelet Aggregation Inhibitors , Humans , Platelet Aggregation Inhibitors/pharmacology , Ticagrelor/pharmacology , Alprostadil/metabolism , Alprostadil/pharmacology , von Willebrand Factor/metabolism , von Willebrand Factor/pharmacology , Blood Platelets , Platelet Aggregation , Aspirin/pharmacology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Platelet Glycoprotein GPIb-IX Complex/pharmacology
7.
Platelets ; 35(1): 2288679, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38099316

ABSTRACT

Fluid shear plays a key role in hemostasis and thrombosis, and the purpose of this study was to investigate the effect of shear gradient change rate (SGCR) on platelet reactivity and von Willebrand factor (vWF) activity and its mechanism. In this study, we developed a set of microfluidic chips capable of generating different shear gradients and simulated the shear rate distribution in the flow field by COMSOL Multiphysics software. Molecular markers of platelet activation (P-selectin, activated GPIIb/IIIa, phosphatidylserine exposure, and monocyte-platelet aggregate formation) were analyzed by flow cytometry. Platelet aggregation induced by shear gradient was studied by a microfluidic experimental platform, and plasma vWF ristocetin cofactor (vWF: RCO) activity was investigated by flow cytometry. The expression of p-Akt was studied by Western blotting. The results showed that the faster the SGCR, the higher the expression of platelet p-Akt, and the stronger the platelet reactivity and vWF activity. This indicates that fluid shear stress can activate platelets and vWF in a shear gradient-dependent manner through the PI3K/AKT signal pathway, and the faster the SGCR, the more significant the activation effect.


What is the context? Recent studies have shown that fluid shear stress plays a key role in platelet activation and thrombosis. However, its mechanism and effect have not been fully elucidated.The development of microfluidic chip technology enables people to study platelet function in a precisely controlled flow field environment.Previous studies have shown that the PI3K-AKT signal pathway may be a mechanically sensitive signal transduction pathway.What is new?In this study, we designed a microfluidic model with different narrow geometry, and controlled the injection pump to perfuse fluid at the same flow rate, so that the platelets flowing through the model experienced the flow field environment of different shear gradients.We studied the activities of platelets and von Willebrand factor in different flow fields and explored their signal transduction pathways.What is the impact? Our results suggest that vascular stenosis does increase platelet activity and the risk of thrombosis. However, its ability to activate platelets is not only related to the peak shear rate and shear time, but also closely related to the decreasing rate of shear gradient. Even if the peak shear rate at the stenosis is the same, the faster the shear rate decreases, the higher the reactivity of platelets and von Willebrand factor, which may be mediated by the PI3K-AKT signal pathway. This study not only helps clinicians to judge the risk of thrombosis in patients with atherosclerosis or percutaneous coronary intervention, but also helps us to better understand the mechanism of shear-induced platelet activation.


Subject(s)
Proto-Oncogene Proteins c-akt , von Willebrand Factor , Humans , von Willebrand Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Platelet Activation , Platelet Aggregation/physiology , Blood Platelets/metabolism
8.
Mar Life Sci Technol ; 5(3): 415-430, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37637251

ABSTRACT

Understanding consistencies and discrepancies in characterizing diversity and quantity of phytoplankton is essential for better modeling ecosystem change. In this study, eukaryotic phytoplankton in the Pearl River Estuary, South China Sea were investigated using nuclear 18S rRNA and plastid 16S or 23S rRNA genes and pigment analysis. It was found that 18S abundance poorly explained the variations in total chlorophyll a (Chl-a). However, the ratios of log-transformed 18S abundance to Chl-a in the major phytoplankton groups were generally environment dependent, suggesting that the ratio has potential as an indicator of the physiological state of phytoplankton. The richness of 18S-based operational taxonomic units was positively correlated with the richness of 16S-based amplicon sequence variants of the whole phytoplankton community, but insignificant or weak for individual phytoplankton groups. Overall, the 18S based, rather than the 16S based, community structure had a greater similarity to pigment-based estimations. Relative to the pigment data, the proportion of haptophytes in the 18S dataset, and diatoms and cryptophytes in the 16S dataset, were underestimated. This study highlights that 18S metabarcoding tends to reflect biomass-based community organization of eukaryotic phytoplankton. Because there were lower copy numbers of plastid 16S than 18S per genome, metabarcoding of 16S probably approximates cell abundance-based community organization. Changes in biomass organization of the pigment-based community were sensitive to environmental changes. Taken together, multiple methodologies are recommended to be applied to more accurately profile the diversity and community composition of phytoplankton in natural ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00186-x.

9.
Nanomaterials (Basel) ; 13(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630898

ABSTRACT

To address the thermal comfort needs of the human body, the development of personal thermal management textile is critical. Phase change materials (PCMs) have a wide range of applications in thermal management due to their large thermal storage capacity and their isothermal properties during phase change. However, their inherent low thermal conductivity and susceptibility to leakage severely limit their application range. In this study, polyethylene glycol (PEG) was used as the PCM and polyacrylonitrile (PAN) as the polymer backbone, and the thermal conductivity was increased by adding spherical nano-alumina (Al2O3). Utilizing coaxial electrospinning technology, phase-change thermoregulated nanofiber membranes with a core-shell structure were created. The study demonstrates that the membranes perform best in terms of thermal responsiveness and thermoregulation when 5% Al2O3 is added. The prepared nanofiber membranes have a melting enthalpy of 60.05 J·g-1 and retain a high enthalpy after 50 cycles of cold and heat, thus withstanding sudden changes in ambient temperature well. Additionally, the nanofiber membranes have excellent air permeability and high moisture permeability, which can increase wearer comfort. As a result, the constructed coaxial phase change thermoregulated nanofiber membranes can be used as a promising textile for personal thermal management.

10.
Am J Cancer Res ; 13(5): 1766-1785, 2023.
Article in English | MEDLINE | ID: mdl-37293161

ABSTRACT

Nasopharyngeal carcinoma (NPC) is clinically challenging due to the development of distant metastasis following initial therapy. Therefore, it is necessary to elucidate the mechanisms underlying metastases to develop novel therapeutic strategies. Nucleophosmin 1 (NPM1) has been directly linked to the development of human tumors and may have both tumor-suppressing and oncogenic properties. Although NPM1 is often overexpressed in solid tumors of various histopathological origins, its specific function in mediating the development of NPC is still unknown. Here, we investigated the role of NPM1 in NPC and discovered that NPM1 was elevated in clinical NPC samples and served as a predictor of the worst prognosis in NPC patients. Furthermore, the upregulation of NPM1 promoted the migration and the cancer stemness of NPC both in vitro and in vivo. Mechanistic analyses revealed that the E3 ubiquitin ligase Mdm2 was recruited by NPM1 to induce the ubiquitination-mediated proteasomal degradation of p53. Ultimately, knockdown of NPM1 suppressed the stemness and EMT signals. In summation, this study demonstrated the role and the underlying molecular mechanism of NPM1 in NPC, providing the evidence for the clinical application of NPM1 as a therapeutic target for the treatment of patients with NPC.

11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(2): 257-263, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37157073

ABSTRACT

Objective To examine the antiplatelet effect of ticagrelor by microfluidic chip and flow cytometry under shear stress in vitro. Methods Microfluidic chip was used to examine the effect of ticagrelor on platelet aggregation at the shear rates of 300/s and 1500/s.We adopted the surface coverage of platelet aggregation to calculate the half inhibition rate of ticagrelor.The inhibitory effect of ticagrelor on ADP-induced platelet aggregation was verified by optical turbidimetry.Microfluidic chip was used to construct an in vitro vascular stenosis model,with which the platelet reactivity under high shear rate was determined.Furthermore,the effect of ticagrelor on the expression of fibrinogen receptor (PAC-1) and P-selectin (CD62P) on platelet membrane activated by high shear rate was analyzed by flow cytometry. Results At the shear rates of 300/s and 1500/s,ticagrelor inhibited platelet aggregation in a concentration-dependent manner,and the inhibition at 300/s was stronger than that at 1500/s (both P<0.001).Ticagrelor at a concentration ≥4 µmol/L almost completely inhibited platelet aggregation.The inhibition of ADP-induced platelet aggregation by ticagrelor was similar to the results under flow conditions and also in a concentration-dependent manner.Ticagrelor inhibited the expression of PAC-1 and CD62P. Conclusion We employed microfluidic chip to analyze platelet aggregation and flow cytometry to detect platelet activation,which can reveal the responses of different patients to ticagrelor.


Subject(s)
Microfluidics , Platelet Aggregation Inhibitors , Humans , Ticagrelor/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Flow Cytometry/methods , Platelet Aggregation
12.
Clin Hemorheol Microcirc ; 84(2): 125-139, 2023.
Article in English | MEDLINE | ID: mdl-37066902

ABSTRACT

Circulating platelets are sometimes exposed to high shear rate environments due to vascular stenosis, and the effect of transiently elevated pathological high shear rates on platelet activation and aggregation function has not been clarified. The aim of this study was to investigate the effect of pathological high shear rate (8302s-1) exposure time (3.16-25.3 ms) on platelet activation and aggregation function. In addition, by adding active ingredients of antiplatelet drugs such as ASA (an active ingredient of aspirin), Ticagrelor, Tirofiban and GP1BA (platelet membrane protein GPIb inhibitor) in vitro, we studied TXA2, P2Y12-ADP, GPIIb/IIIa-fibrinogen and GPIb /IX/V-vWF receptor pathways to determine platelet activation function mediated by pathological high shear rate. In this study, we designed a set of microfluidic chips with stenosis lengths of 0.5 mm, 1 mm, 2 mm, 3 mm, and 4 mm, all with 80% stenosis, to generate pathological high shear forces that can act at different times. The whole blood flowing through the microchannels was collected by perfusion of sodium citrate anticoagulated whole blood at a physiological arterial shear rate (1500 s-1), and the expression levels of platelet surface activation markers (P-selectin and GP IIb/IIIa) and the degree of platelet aggregation were analyzed by flow cytometry; platelet aggregation patterns were observed by microscopic examination of blood smears. The results showed that shearing significantly increased platelet activation and aggregation levels compared to un-sheared whole blood, and the activation and aggregation levels increased with increasing duration of pathological high shear rate. In vitro inhibition studies showed that ASA barely inhibited the expression of P-selectin and PAC-1 on the platelet surface; Ticagrelor effectively inhibited the expression of both P-selectin and PAC-1; Tirofiban significantly inhibited the expression of PAC-1 on the platelet surface and slightly inhibited the expression of P-selectin; GP1BA significantly inhibited the expression of both. Our results suggest that transient pathological high shear rate (8302s-1) exposure can induce platelet activation in a time-dependent manner; however, the mechanism is more complex and may be due to the following reasons: transient elevated pathological high shear rate activates platelets through the GPIb/IX/V-vWF receptor pathway, and after platelet activation, its surface membrane protein GPIIb/IIIa receptors activate platelets through fibrinogen to form platelet-platelet aggregates, and further activation of active substances such as ADP and TXA2 released by platelet alpha particles, which contribute to the formation of irreversible platelet aggregation.


Subject(s)
P-Selectin , Platelet Activation , Humans , P-Selectin/pharmacology , Tirofiban/pharmacology , Ticagrelor/pharmacology , Constriction, Pathologic , Platelet Aggregation/physiology , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology , Blood Platelets/metabolism , Platelet Aggregation Inhibitors/pharmacology , Aspirin/pharmacology , Fibrinogen , von Willebrand Factor/metabolism , von Willebrand Factor/pharmacology
13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 495-502, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37096525

ABSTRACT

OBJECTIVE: To study the effect of gradient shear stress on platelet aggregation by microfluidic chip Technology. METHODS: Microfluidic chip was used to simulate 80% fixed stenotic microchannel, and the hydrodynamic behavior of the stenotic microchannel model was analyzed by the finite element analysis module of sollidwork software. Microfluidic chip was used to analyze the adhesion and aggregation behavior of platelets in patients with different diseases, and flow cytometry was used to detect expression of the platelet activation marker CD62p. Aspirin, Tirofiban and protocatechuic acid were used to treat the blood, and the adhesion and aggregation of platelets were observed by fluorescence microscope. RESULTS: The gradient fluid shear rate produced by the stenosis model of microfluidic chip could induce platelet aggregation, and the degree of platelet adhesion and aggregation increased with the increase of shear rate within a certain range of shear rate. The effect of platelet aggregation in patients with arterial thrombotic diseases were significantly higher than normal group (P<0.05), and the effect of platelet aggregation in patients with myelodysplastic disease was lower than normal group (P<0.05). CONCLUSION: The microfluidic chip analysis technology can accurately analyze and evaluate the platelet adhesion and aggregation effects of various thrombotic diseases unde the environment of the shear rate, and is helpful for auxiliary diagnosis of clinical thrombotic diseases.


Subject(s)
Microfluidics , Thrombosis , Humans , Platelet Adhesiveness , Platelet Aggregation , Blood Platelets/metabolism , Platelet Aggregation Inhibitors/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Activation/physiology
15.
Blood Coagul Fibrinolysis ; 34(1): 47-60, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36367784

ABSTRACT

OBJECTIVE: In order to study the antithrombotic effect and mechanism of tetramethylpyrazine (TMA). METHODS: In this study, we developed a microfluidic chip model that can mimic normal arteries and stenotic arterial vessels, and studied the inhibitory effects of TMA on platelet aggregation, activation (P-selectin, GPIIb/IIIa, monocyte-platelet aggregates) and phosphatidyl serine (PS) exposure. In addition, we also investigated the effect of TMA on ADP and ristocetin-induced platelet aggregation by turbidimetry. RESULTS: The results showed that TMA significantly inhibited the platelet aggregation, activation and PS exposure induced by pathological high shear rate. Under static conditions, TMA can inhibit ADP and ristocetin-induced platelet aggregation. CONCLUSION: The results indicated that TMA mainly inhibited platelet aggregation, activation and PS exposure by inhibiting the binding of von Willebrand factor (vWF) to the GPIb/IX/V complex, and partially inhibited platelet aggregation through the platelet P2Y 12 -ADP receptor pathway.


Subject(s)
Phosphatidylserines , Platelet Aggregation , Humans , Ristocetin/pharmacology , Microfluidics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Blood Platelets/metabolism , von Willebrand Factor/metabolism
16.
Acta Pharmaceutica Sinica ; (12): 3349-3353, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-999080

ABSTRACT

Natural products are an important source for the development of antitumor lead compounds, but the pharmacological effects and regulatory mechanisms of natural products in osimertinib resistance in non-small cell lung cancer (NSCLC) are not well understood. The natural product ligustroflavone was used as the research object to analyze its efficacy in osimertinib-resistant NSCLC cells by cell proliferation assay and cell cycle detection. The potential targets of ligustroflavone in osimertinib-resistant NSCLC cells were screened by public databases and bioinformatics, molecular docking and microscale thermophoresis were used to identify the interaction between privet and target molecules. Western blot was used to detect the effect of privet on the target molecules and their downstream pathways. Ligustroflavone reduced the proliferation of osimertinib-resistant NSCLC cells, and could arrest the cell cycle. Cyclin-dependent kinase 6 (CDK6) was the potential target of ligustroflavone in osimertinib-resistant NSCLC cells. Ligustroflavone inhibited the activation of CDK6-Rb axis. Together, ligustroflavone could regulate osimertinib resistance in NSCLC cells by binding cell cyclin-related molecules. This study provides a theoretical basis for the targeted drug resistance of NSCLC with natural products, and also provides a new idea for the development of clinical drug combination.

17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981312

ABSTRACT

This study explored the effect and underlying mechanism of Stellera chamaejasme extract(SCE) on multidrug resistance of breast cancer. The chemotherapy-sensitive breast cancer cell line MCF-7 and adriamycin(ADR)-resistant cell line MCF-7/ADR were used as experimental subjects. MTT assay was used to detect cell proliferation activity. Pi staining was used to detect the cell cycle. 4',6-Diamidino-2-phenylindole, dihydrochloride(DAPI) staining and flow cytometry were used to detect apoptosis. Dansylcadaverine(MDC) staining and GFP-LC3B-Mcherry adenovirus transfection were used to detect autophagy. The protein expression of Bcl-2, Bax, caspase-9, caspase-3, LC3B, p62, and Beclin-1 was detected by Western blot. The results showed that SCE could significantly inhibit the proliferation of both sensitive and resistant breast cancer cell lines. The drug resistance factor was 0.53, which was significantly lower than 59 of ADR. Meanwhile, the proportion of sensitive/resistant cells in the G_0/G_1 phase increased significantly after SCE treatment. In addition, DAPI staining showed that a series of apoptosis phenomena such as nuclear pyknosis, staining deepening, and nuclear fragmentation appeared in sensitive/resistant cell lines after SCE administration. Moreover, the results of flow cytometry double staining showed that the proportion of apoptotic cells in sensitive/resistant cell lines increased significantly after SCE administration. Besides, Western blot showed that the protein expression levels of caspase-3, caspase-9, and Bcl-2 significantly decreased and the expression level of Bax protein significantly increased in both breast cancer cell lines after SCE administration. Furthermore, SCE could also increase the positive fluorescent spots after MDC staining and yellow fluorescent spots after GFP-LC3B-mcherry transfection, and up-regulate the expression levels of autophagy-related proteins LC3B-Ⅱ, p62, and Beclin-1 in breast cancer cells. In summary, SCE may play the role of anti-multidrug resistance by blocking the cell cycle of breast cancer multidrug-resistant cells, blocking autophagy flow, and ultimately interfering with the apoptosis resistance of drug-resistant cells.


Subject(s)
Humans , Female , Breast Neoplasms/metabolism , MCF-7 Cells , Caspase 3/metabolism , Caspase 9/metabolism , Beclin-1/pharmacology , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Cell Proliferation
18.
Int J Womens Health ; 14: 1547-1553, 2022.
Article in English | MEDLINE | ID: mdl-36387328

ABSTRACT

Objective: This study aimed to investigate the effect of nursing intervention based on the G-Caprini scale on the incidence of venous thromboembolism (VTE) after gynecological surgery and patients' satisfaction rate for nursing care. Methods: Ninety-eight patients who attended Taizhou People's Hospital and underwent gynecological surgery between January 2021 and December 2021 were selected as subjects and divided into two groups according to a random number table, with 49 cases in each group. The control group was given conventional nursing care, and the experimental group received nursing intervention based on the G-Caprini scale. The rate of postoperative lower-limb deep-vein thrombosis in the two groups was compared, and the incidence of VTE and the level of nursing satisfaction in the two groups were statistically analyzed. Results: The incidence of postoperative VTE in each risk class of the G-Caprini scale was lower in the experimental group than in the control group, and the difference was statistically significant (P < 0.01). In the experimental group, 47 patients were very satisfied with the nursing care, 1 was satisfied, and 1 was dissatisfied, which meant the nursing satisfaction rate in the experimental group was 97.96 (48/49). In the control group, 40 patients were very satisfied with the nursing care, 2 were satisfied, 1 was basically satisfied, and 6 were dissatisfied; thus, the satisfaction rate for nursing care in the control group was 87.75%. The difference between the two groups was statistically significant (χ 2 = 19.657, p < 0.05). Conclusion: Nursing interventions based on the G-Caprini rating scale were significantly effective in preventing VTE in patients after gynecological surgery and resulted in higher levels of patient satisfaction in terms of nursing care.

19.
Inorg Chem ; 61(25): 9385-9391, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35687833

ABSTRACT

Doxorubicin (DOX) is an anthraquinone drug used for the efficient treatment of a variety of tumors in human beings. Unfortunately, its poor biodegradability causes incomplete metabolism in the body. Therefore, it is of great significance to synthesize a sensitive and selective material for DOX detection. In this paper, we report a water-soluble Tb12 cluster and track its step-by-step formation (L → Tb1L1 → Tb2L1 → Tb2L2 → Tb3L2 → Tb4L2 → Tb12L6). Tb12 can be used to determine the presence of DOX, which quenches the luminescence of the Tb12 aqueous solution, and the detection limit can reach 13 nM (KSV = 8.7 × 105 M-1). Tb12 has advantages of high sensitivity and high selectivity for the detection of DOX in a simulated environment of human urine and serum.


Subject(s)
Neoplasms , Water , Doxorubicin , Humans
20.
Comput Math Methods Med ; 2022: 3741677, 2022.
Article in English | MEDLINE | ID: mdl-35734778

ABSTRACT

The study was aimed to explore the brain imaging characteristics of major depressive disorder (MDD) patients with suicide ideation (SI) through resting-state functional magnetic resonance imaging (rs-fMRI) and to investigate the potential neurobiological role in the occurrence of SI. 50 MDD patients were selected as the experimental group and 50 healthy people as the control group. The brain images of the patients were obtained by MRI. Extraction of EEG biological features was from rs-fMRI images. Since MRI images were disturbed by noise, the initial clustering center of FCM was determined by particle swarm optimization algorithm so that the noise of the collected images was cleared by adaptive median filtering. Then, the image images were processed by the optimized model. The correlation between brain mALFF and clinical characteristics was analyzed. It was found that the segmentation model based on the FCM algorithm could effectively eliminate the noise points in the image; that the zALFF values of the right superior temporal gyrus (R-STG), left middle occipital gyrus (L-MOG), and left middle temporal gyrus (L-MTG) in the observation group were significantly higher than those in the control group (P < 0.05); and that the average zALFF values of left thalamus (L-THA) and left middle frontal gyrus (L-MFG) decreased. The mean zALFF values of L-MFG and L-SFG demonstrated good identification value for SI in MDD patients. In summary, MRI images based on FCM had a good convergence rate, and electrical biological characteristics of brain regions were abnormal in MDD patients with SI, which can be applied to the diagnosis and treatment of patients with depression in clinical practice.


Subject(s)
Brain/diagnostic imaging , Depressive Disorder, Major/physiopathology , Brain Mapping , Case-Control Studies , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/psychology , Humans , Magnetic Resonance Imaging/methods , Suicidal Ideation
SELECTION OF CITATIONS
SEARCH DETAIL
...