Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.160
Filter
1.
medRxiv ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38946975

ABSTRACT

Background: Clonal hematopoiesis of indeterminate potential (CHIP) is a common inflammatory condition of aging that causes myriad end-organ damage. We have recently shown associations for CHIP with acute kidney injury and with kidney function decline in the general population, with stronger associations for CHIP driven by mutations in genes other than DNMT3A (non- DNMT3A CHIP). Longitudinal kidney function endpoints in individuals with pre-existing chronic kidney disease (CKD) and CHIP have been examined in two previous studies, which reported conflicting findings and were limited by small sample sizes. Methods: In this study, we examined the prospective associations between CHIP and CKD progression events in four cohorts of CKD patients (total N = 5,772). The primary outcome was a composite of 50% kidney function decline or kidney failure. The slope of eGFR decline was examined as a secondary outcome. Mendelian randomization techniques were then used to investigate potential causal effects of CHIP on eGFR decline. Finally, kidney function was assessed in adenine-fed CKD model mice having received a bone marrow transplant recapitulating Tet2 -CHIP compared to controls transplanted wild-type bone marrow. Results: Across all cohorts, the average age was 66.4 years, the average baseline eGFR was 42.6 ml/min/1.73m 2 , and 24% had CHIP. Upon meta-analysis, non- DNMT3A CHIP was associated with a 59% higher relative risk of incident CKD progression (HR 1.59, 95% CI: 1.02-2.47). This association was more pronounced among individuals with diabetes (HR 1.29, 95% CI: 1.03-1.62) and with baseline eGFR ≥ 30 ml/min/1.73m (HR 1.80, 95% CI: 1.11-2.90). Additionally, the annualized slope of eGFR decline was steeper among non- DNMT3A CHIP carriers, relative to non-carriers (ß -0.61 ± 0.31 ml/min/1.73m 2 , p = 0.04). Mendelian randomization analyses suggested a causal role for CHIP in eGFR decline among individuals with diabetes. In a dietary adenine mouse model of CKD, Tet2 -CHIP was associated with lower GFR as well as greater kidney inflammation, tubular injury, and tubulointerstitial fibrosis. Conclusion: Non- DNMT3A CHIP is a potentially targetable novel risk factor for CKD progression.

2.
J Ethnopharmacol ; 333: 118416, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848975

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia rupestris L. (AR) is a traditional medicinal herb commonly used in the Uyghurs and Kazakhs; it was first documented in the Supplement to Compendium of Materia Medica written by Zhao Xuemin in the Qing Dynasty of China and is used clinically to treat colds, hepatitis, and allergic diseases. AIM OF THE STUDY: The material basis and mechanisms of AR in acute liver injury (ALI) remain unclear. The purpose of this study was to reveal the possible active components involved in liver protection in AR and to preliminarily explore their pharmacological mechanisms. MATERIALS AND METHODS: The chemical composition of the ethanolic extract (ARA) was identified by UPLC-Q-Exactive-MS/MS and confirmed by 32 reference standards. The pharmacodynamic results were utilized to screen the active part within the ARA that contribute to the amelioration of CCl4/ConA-induced ALI. The main active components and core targets were predicted by network pharmacology and verified by molecular docking combined with qPCR and Western blotting. RESULTS: A total of 131 chemical components were identified in the ARA. The extraction parts of ARA had different therapeutic effects on ALI, among which the dichloromethane extract (ARA-D), which might constitute the main effective fraction of ARA, had significant anti-ALI effects. The network pharmacology results showed that targets including PIK3R1, AKT1, and EGFR, as well as 7 compounds, such as artemetin, vitexicarpin and rupestonic acid may play pivotal roles in treating CCl4/ConA-induced ALI. GO and KEGG pathway enrichment analyses revealed that the PI3K-AKT signaling pathway was the main pathway involved. In each model, ARA-D dose-dependently reduced the increase in ALT levels. High-dose ARA-D markedly decreased ALT activity from 196.79 ± 24.82 to 66.37 ± 16.19 U/L in the CCl4 model group and from 178.00 ± 28.39 to 50.67 ± 7.39 U/L in the ConA model group. Further studies revealed that ARA-D significantly inhibited TNF-α, IL-1ß, and IL-6 expression and inhibited the protein expression of PI3K, p-PI3K, and p-AKT in CCl4/ConA-induced ALI. CONCLUSION: ARA-D exhibits protective effects against ALI induced by CCl4/ConA, potentially through inhibition of the PI3K-AKT signaling pathway. These findings may help to determine the material basis and mechanisms of action of ARA-D for liver protection and provide ideas for future comprehensive studies.

3.
Front Microbiol ; 15: 1327520, 2024.
Article in English | MEDLINE | ID: mdl-38855766

ABSTRACT

Cyanobacterial blooms (CBs) present significant challenges to Chinese mitten crab (CMC) culture, posing hazards to the aquatic microbial ecology. However, the current focus on the microbial ecological changes within the CMC culture system under the influence of CBs is somewhat insufficient. There's an urgent need to analyze the microbial ecosystem of the CMC culture system under CBs. This study employed 16S rRNA gene amplicon sequencing to investigate the dynamics of the environmental microbial community in both the rice-crab co-culture (RC) and crab monoculture (CM) models. The results revealed that cyanobacteria reached high levels in the CM water in July, while they began to increase in the RC water in August. Notably, OTU147 (uncultured bacterium g_Planktothrix NIVA-CYA 15), identified as the dominant taxon associated with CBs, showed a significant linear relationship with TP, NO2 --N, and the N:P ratio. TP, TN, NO2 --N, and CODMn had a more pronounced impact on the structure of bacterial communities and cyanobacterial taxa in the water. The bacterial community structure involved in carbon metabolism displayed temporal succession in the water. The co-occurrence network of the bacterial community primarily consisted of Chloroflexi, Proteobacteria, and Firnicutes in the sediment, and Actinobacteria, Proteobacteria, Chloroflexi, and Bacteroidota in the water. In contrast, the co-occurrence network included different peripheral species in the sediment and water. Keystone species were predominantly represented by OTU22 (uncultured actinobacterium g_ hgcI clade) and OTU12 (uncultured Opitutae bacterium g_ norank) in the RC water, and by OTU25 (uncultured bacterium g_ Limnohabitans) in the CM water. TP, TN, NO2 --N, and CODMn were identified as the primary environmental factors influencing these keystone taxa within the culture water. In conclusion, this study on the microbial ecology of the CMC culture system under the influence of CBs provides valuable insights that can be instrumental in subsequent management efforts.

4.
Article in English | MEDLINE | ID: mdl-38912813

ABSTRACT

CONTEXT: Early age at menarche (AAM) is a risk factor for type 2 diabetes later in life, but the pathogenic pathways that confer increased risk remain unknown. OBJECTIVE: We examined the associations between AAM and inflammatory and glucose metabolism biomarkers among U.S. adult women who were free of diabetes. METHODS: Using the National Health and Nutrition Examination Survey (NHANES) 1999-2018, 19,228 women over 20 years old who were free of self-reported cancer and diabetes were included in this cross-sectional analysis. AAM was the self-reported age at first menstruation. CRP, fasting glucose, fasting insulin, and ferritin levels were measured as biomarkers of inflammation and glucose metabolism in adult blood samples using latex-enhanced nephelometry, enzymatic, and immunoassay methods. Multiple linear regression was used to relate AAM to the biomarkers. RESULTS: The median age at the time of blood sample collection was 44 years (IQR, 33-62). After age adjustment, there was an association between a lower AAM and higher CRP (P-trend=0.006); fasting glucose (P-trend<0.0001); fasting insulin (P-trend <0.0001); and ferritin (p-trend<0.0001). These remained significant after additional adjustment for demographic, reproductive, lifestyle, and adiposity variables, except for ferritin. Smoking modified the effect of AAM on CRP (p-interaction = 0.014), fasting insulin (p-interaction <0.001), and fasting glucose (p-interaction<0.001). In stratified analysis, the observed associations became more pronounced in non-smokers, while they were attenuated to non-significance in active smokers. CONCLUSION: Earlier age at menarche is associated with an unfavorable inflammatory and glucose metabolic biomarker profile in a nationally representative sample of adult women free of diabetes, especially among non-smokers.

5.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855868

ABSTRACT

Lactate elevation is a well-characterized biomarker of mitochondrial dysfunction, but its role in diabetic kidney disease (DKD) is not well defined. Urine lactate was measured in patients with type 2 diabetes (T2D) in 3 cohorts (HUNT3, SMART2D, CRIC). Urine and plasma lactate were measured during euglycemic and hyperglycemic clamps in participants with type 1 diabetes (T1D). Patients in the HUNT3 cohort with DKD had elevated urine lactate levels compared with age- and sex-matched controls. In patients in the SMART2D and CRIC cohorts, the third tertile of urine lactate/creatinine was associated with more rapid estimated glomerular filtration rate decline, relative to first tertile. Patients with T1D demonstrated a strong association between glucose and lactate in both plasma and urine. Glucose-stimulated lactate likely derives in part from proximal tubular cells, since lactate production was attenuated with sodium-glucose cotransporter-2 (SGLT2) inhibition in kidney sections and in SGLT2-deficient mice. Several glycolytic genes were elevated in human diabetic proximal tubules. Lactate levels above 2.5 mM potently inhibited mitochondrial oxidative phosphorylation in human proximal tubule (HK2) cells. We conclude that increased lactate production under diabetic conditions can contribute to mitochondrial dysfunction and become a feed-forward component to DKD pathogenesis.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Glycolysis , Lactic Acid , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Mice , Lactic Acid/metabolism , Lactic Acid/blood , Female , Male , Middle Aged , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Mitochondria/metabolism , Adult , Glomerular Filtration Rate , Aged , Kidney Tubules, Proximal/metabolism , Glucose/metabolism , Oxidative Phosphorylation , Biomarkers/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
6.
Phytomedicine ; 130: 155626, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38850631

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is a serious cardiovascular disease, which presents different pathophysiological changes with the prolongation of the disease. Compound danshen dripping pills (CDDP) has obvious advantages in MI treatment and widely used in the clinic. However, the current studies were mostly focused on the endpoint of CDDP intervention, lacking the dynamic attention to the disease process. It is of great value to establish a dynamic research strategy focused on the changes in pharmacodynamic substances for guiding clinical medication more precisely. PURPOSE: It is aimed to explore the dynamic regulating pattern of CDDP on MI based on metabolic trajectory analysis, and then clarify the variation characteristic biomarkers and pharmacodynamic substances in the intervention process. METHODS: The MI model was successfully prepared by coronary artery left anterior descending branch ligation, and then CDDP intervention was given for 28 days. Endogenous metabolites and the components of CDDP in serum were measured by LC/MS technique simultaneously to identify dynamic the metabolic trajectory and screen the characteristic pharmacodynamic substances at different points. Finally, network pharmacology and molecular docking techniques were used to simulate the core pharmacodynamic substances and core target binding, then validated at the genetic and protein level by Q-PCR and western blotting technology. RESULTS: CDDP performed typical dynamic regulation features on metabolite distribution, biological processes, and pharmacodynamic substances. During 1-7 days, it mainly regulated lipid metabolism and inflammation, the Phosphatidylcholine (PC(18:1(9Z/18:1(9Z)) and Sphingomyelin (SM(d18:1/23:1(9Z)), SM(d18:1/24:1(15Z)), SM(d18:0/16:1(9Z))) were the main characteristic biomarkers. Lipid metabolism was the mainly regulation pathway during 14-21 days, and the characteristic biomarkers were the Lysophosphatidylethanolamine (LysoPE(0:0/20:0), PE-NMe2(22:1(13Z)/15:0)) and Sphingomyelin (SM(d18:1/23:1(9Z))). At 28 days, in addition to inflammatory response and lipid metabolism, fatty acid metabolism also played the most important role. Correspondingly, Lysophosphatidylcholine (LysoPC(20:0/0:0)), Lysophosphatidylserine (LPS(18:0/0:0)) and Fatty acids (Linoelaidic acid) were the characteristic biomarkers. Based on the results of metabolite distribution and biological process, the characteristic pharmacodynamic substances during the intervention were further identified. The results showed that various kinds of Saponins and Tanshinones as the important active ingredients performed a long-range regulating effect on MI. And the other components, such as Tanshinol and Salvianolic acid B affected Phosphatidylcholine and Sphingomyelin through Relaxin Signaling pathway during the early intervention. Protocatechualdehyde and Rosmarinic acid affected Lysophosphatidylethanolamine and Sphingomyelin through EGFR Tyrosine kinase inhibitor resistance during the late intervention. Tanshinone IIB and Isocryptotanshinone via PPAR signaling pathway affected Lysophosphatidylcholine, Lysophosphatidylserine, and Fatty acids. CONCLUSION: The dynamic regulating pattern was taken as the entry point and constructs the dynamic network based on metabolic trajectory analysis, establishes the dynamic correlation between the drug-derived components and the endogenous metabolites, and elucidates the characteristic biomarkers affecting the changes of the pharmacodynamic indexes, systematically and deeply elucidate the pharmacodynamic substance and mechanism of CDDP on MI. It also enriched the understanding of CDDP and provided a methodological reference for the dynamic analysis of complex systems of TCM.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Myocardial Infarction , Salvia miltiorrhiza , Drugs, Chinese Herbal/pharmacology , Salvia miltiorrhiza/chemistry , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Animals , Male , Network Pharmacology , Rats, Sprague-Dawley , Biomarkers/metabolism , Rats , Lysophosphatidylcholines , Camphanes , Panax notoginseng
7.
Environ Res ; 259: 119509, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945512

ABSTRACT

BACKGROUND: Public health is greatly affected by heatwaves, especially as a result of climate change. It is unclear whether heatwaves affect injury hospitalization, especially as developing countries facing the impact of climate change. OBJECTIVES: To assess the impact of heatwaves on injury-related hospitalization and the economic burden. METHODS: The daily hospitalizations and meteorological data from 2014 to 2019 were collected from 23 study sites in 11 meteorological geographic zones in China. We conducted a two-stage time series analysis based on a time-stratified case-crossover design, combined with DLNM to assess the association between heatwaves and daily injury hospitalization, and to further assess the regional and national economic losses resulting from hospitalization by calculating excess hospitalization costs (direct economic losses) and labor losses (indirect economic losses). To determine the vulnerable groups and areas, we also carried out stratified analyses by age, sex, and region. RESULTS: We found that 6.542% (95%CI: 3.939%, 9.008 %) of injury hospitalization were attributable to heatwaves during warm season (May to September) from 2014 to 2019. Approximately 361,447 injury hospitalizations were attributed to heatwaves each year in China, leading to an excess economic loss of 5.173 (95%CI: 3.104, 7.196) billion CNY, of which 3.114 (95%CI: 1.454, 4.720) billion CNY for males and 4.785 (95%CI: 3.203, 6.321) billion CNY for people aged 15-64 years. The attributable fraction (AF) of injury hospitalizations due to heatwaves was the highest in the plateau mountain climate zone, followed by the subtropical monsoon climate zone and the temperate monsoon climate zone. CONCLUSIONS: Heatwaves significantly increase the disease and economic burden of injury hospitalizations, and vary across populations and regions. Our findings implicate the necessity for targeted measures, including raising public awareness, improving healthcare infrastructure, and developing climate resilience policies, to reduce the threat of heatwaves to vulnerable populations and the associated disease and economic burden.

8.
J Affect Disord ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897298

ABSTRACT

BACKGROUND: Brain-derived neurotrophic factor (BDNF) is crucial for neuronal survival and may be implicated in the pathophysiological process of depression. This study aimed to prospectively investigate the association between serum BDNF and post-stroke depression (PSD) at 3 months in a multicenter cohort study. METHODS: A total of 611 ischemic stroke patients with serum BDNF measurements from the China Antihypertensive Trial in Acute Ischemic Stroke were included in this analysis. We used the 24-item Hamilton Depression Rating Scale to assess depression status at 3 months after ischemic stroke, and PSD was defined as a score of ≥8. RESULTS: Baseline serum BDNF was inversely associated with the risk of depression after ischemic stroke. The multivariable-adjusted odds ratio of PSD for the highest tertile of BDNF was 0.53 (95 % confidence interval, 0.34-0.82; P for trend = 0.004) compared with the lowest tertile. Multivariable-adjusted spline regression model also showed a linear does-response association between serum BDNF levels and PSD at 3 months (P for linearity = 0.006). In addition, adding serum BDNF to conventional risk factors significantly improved the risk reclassification of PSD (net reclassification improvement: 16.98 %, P = 0.039; integrated discrimination index: 0.93 %, P = 0.026). LIMITATIONS: All patients in this study were Chinese, so our findings should be applied to other populations cautiously. CONCLUSIONS: Higher serum BDNF levels at baseline were significantly associated with a decreased risk of PSD at 3 months, suggesting that BDNF might be a valuable predictive biomarker and potential therapeutic target for PSD among ischemic stroke patients.

9.
J Am Heart Assoc ; 13(10): e033001, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726915

ABSTRACT

BACKGROUND: Higher cardiovascular health (CVH) score is associated with lower risks of cardiovascular disease (CVD) and mortality in the general population. However, it is unclear whether cumulative CVH is associated with CVD, end-stage kidney disease (ESKD), and death in patients with chronic kidney disease. METHODS AND RESULTS: Among individuals from the prospective CRIC (Chronic Renal Insufficiency Cohort) Study, we used the percentage of the maximum possible CVH score attained from baseline to the year 5 visit to calculate cumulative CVH score. Multivariable-adjusted Cox proportional hazards regression was used to investigate the associations of cumulative CVH with risks of adjudicated CVD (myocardial infarction, stroke, and heart failure), ESKD, and all-cause mortality. A total of 3939 participants (mean age, 57.7 years; 54.9% men) were included. The mean (SD) cumulative CVH score attained during 5 years was 55.5% (12.3%). Over a subsequent median 10.2-year follow-up, 597 participants developed CVD, 656 had ESKD, and 1324 died. A higher cumulative CVH score was significantly associated with lower risks of CVD, ESKD, and mortality, independent of the CVH score at year 5. Multivariable-adjusted hazard ratios and 95% CIs per 10% higher cumulative CVH score during 5 years were 0.81 (0.69-0.95) for CVD, 0.82 (0.70-0.97) for ESKD, and 0.80 (0.72-0.89) for mortality. CONCLUSIONS: Among patients with chronic kidney disease stages 2 to 4, a better CVH status maintained throughout 5 years is associated with lower risks of CVD, ESKD, and all-cause mortality. The findings support the need for interventions to maintain ideal CVH status for prevention of adverse outcomes in the population with chronic kidney disease.


Subject(s)
Cardiovascular Diseases , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Male , Female , Middle Aged , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/mortality , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/mortality , Prospective Studies , Aged , Kidney Failure, Chronic/epidemiology , Kidney Failure, Chronic/mortality , Risk Assessment/methods , Time Factors , Cause of Death/trends , Risk Factors , Health Status , Prognosis
10.
Cancer Immunol Res ; 12(7): 876-890, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38752503

ABSTRACT

Cancers that are poorly immune infiltrated pose a substantial challenge, with current immunotherapies yielding limited clinical success. Stem-like memory T cells (TSCM) have been identified as a subgroup of T cells that possess strong proliferative capacity and that can expand and differentiate following interactions with dendritic cells (DCs). In this study, we explored the pattern of expression of a recently discovered inhibitory receptor poliovirus receptor-related immunoglobulin domain protein (PVRIG) and its ligand, poliovirus receptor-related ligand 2 (PVRL2), in the human tumor microenvironment. Using spatial and single-cell RNA transcriptomics data across diverse cancer indications, we found that among the T-cell checkpoints, PVRIG is uniquely expressed on TSCM and PVRL2 is expressed on DCs in immune aggregate niches in tumors. PVRIG blockade could therefore enhance TSCM-DC interactions and efficiently drive T-cell infiltration to tumors. Consistent with these data, following PVRIG blockade in patients with poorly infiltrated tumors, we observed immune modulation including increased tumor T-cell infiltration, T-cell receptor (TCR) clonality, and intratumoral T-cell expansion, all of which were associated with clinical benefit. These data suggest PVRIG blockade as a promising strategy to induce potent antitumor T-cell responses, providing a novel approach to overcome resistance to immunotherapy in immune-excluded tumors.


Subject(s)
Dendritic Cells , Neoplasms , Tumor Microenvironment , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Memory T Cells/immunology , Memory T Cells/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
11.
Sci Total Environ ; 935: 173443, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38782281

ABSTRACT

Fulvic acid (FA) and iron oxides often play regulating roles in the geochemical behavior and ecological risk of arsenic (As) in terrestrial ecosystems. FA can act as electron shuttles to facilitate the reductive dissolution of As-bearing iron (hydr)oxides. However, the influence of FA from different sources on the sequential conversion of Fe/As in As-bearing iron oxides under biotic and abiotic conditions remains unclear. In this work, we exposed prepared As-bearing iron oxides to FAs derived from lignite (FAL) and plant peat (FAP) under anaerobic conditions, tracked the fate of Fe and As in the aqueous phase, and investigated the reduction transformation of Fe(III)/As(V) with or without the presence of Shewanella oneidensis MR-1. The results showed that the reduction efficiency of Fe(III)/As(V) was increased by MR-1, through its metabolic activity and using FAs as electron shuttles. The reduction of Fe(III)/As(V) was closely associated with goethite being more conducive to Fe/As reduction compared to hematite. It is determined that functional groups such as hydroxy, carboxy, aromatic, aldehyde, ketone and aliphatic groups are the primary electron donors. Their reductive capacities rank in the following sequence: hydroxy> carboxy, aromatic, aldehyde, ketone> aliphatic group. Notably, our findings suggest that in the biotic reduction, Fe significantly reduction precedes As reduction, thereby influencing the latter's reduction process across all incubation systems. This work provides empirical support for understanding iron's role in modulating the geochemical cycling of As and is of significant importance for assessing the release risk of arsenic in natural environments.


Subject(s)
Arsenic , Benzopyrans , Ferric Compounds , Oxidation-Reduction , Shewanella , Ferric Compounds/metabolism , Ferric Compounds/chemistry , Arsenic/metabolism , Shewanella/metabolism , Iron/chemistry , Iron/metabolism
13.
Eur Heart J ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757788

ABSTRACT

BACKGROUND AND AIMS: Incident heart failure (HF) among individuals with chronic kidney disease (CKD) incurs hospitalizations that burden patients and health care systems. There are few preventative therapies, and the Pooled Cohort equations to Prevent Heart Failure (PCP-HF) perform poorly in the setting of CKD. New drug targets and better risk stratification are urgently needed. METHODS: In this analysis of incident HF, SomaScan V4.0 (4638 proteins) was analysed in 2906 participants of the Chronic Renal Insufficiency Cohort (CRIC) with validation in the Atherosclerosis Risk in Communities (ARIC) study. The primary outcome was 14-year incident HF (390 events); secondary outcomes included 4-year HF (183 events), HF with reduced ejection fraction (137 events), and HF with preserved ejection fraction (165 events). Mendelian randomization and Gene Ontology were applied to examine causality and pathways. The performance of novel multi-protein risk models was compared to the PCP-HF risk score. RESULTS: Over 200 proteins were associated with incident HF after adjustment for estimated glomerular filtration rate at P < 1 × 10-5. After adjustment for covariates including N-terminal pro-B-type natriuretic peptide, 17 proteins remained associated at P < 1 × 10-5. Mendelian randomization associations were found for six proteins, of which four are druggable targets: FCG2B, IGFBP3, CAH6, and ASGR1. For the primary outcome, the C-statistic (95% confidence interval [CI]) for the 48-protein model in CRIC was 0.790 (0.735, 0.844) vs. 0.703 (0.644, 0.762) for the PCP-HF model (P = .001). C-statistic (95% CI) for the protein model in ARIC was 0.747 (0.707, 0.787). CONCLUSIONS: Large-scale proteomics reveal novel circulating protein biomarkers and potential mediators of HF in CKD. Proteomic risk models improve upon the PCP-HF risk score in this population.

14.
BMC Nephrol ; 25(1): 185, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816682

ABSTRACT

BACKGROUND: Protein carbamylation, a post-translational protein modification primarily driven by urea, independently associates with adverse clinical outcomes in patients with CKD. Biomarkers used to quantify carbamylation burden have mainly included carbamylated albumin (C-Alb) and homocitrulline (HCit, carbamylated lysine). In this study, we aimed to compare the prognostic utility of these two markers in order to facilitate comparisons of existing studies employing either marker alone, and to inform future carbamylation studies. METHODS: Both serum C-Alb and free HCit levels were assayed from the same timepoint in 1632 individuals with CKD stages 2-4 enrolled in the prospective Chronic Renal Insufficiency Cohort (CRIC) study. Adjusted Cox proportional hazard models were used to assess risks for the outcomes of death (primary) and end stage kidney disease (ESKD) using each marker. C-statistics, net reclassification improvement, and integrated discrimination improvement were used to compare the prognostic value of each marker. RESULTS: Participant demographics included mean (SD) age 59 (11) years; 702 (43%) females; 700 (43%) white. C-Alb and HCit levels were positively correlated with one another (Pearson correlation coefficient 0.64). Higher C-Alb and HCit levels showed similar increased risk of death (e.g., the adjusted hazard ratio [HR] for death in the 4th carbamylation quartile compared to the 1st was 1.90 (95% confidence interval [CI] 1.35-2.66) for C-Alb, and 1.89 [1.27-2.81] for HCit; and on a continuous scale, the adjusted HR for death using C-Alb was 1.24 [1.11 to 1.39] per standard deviation increase, and 1.27 [1.10-1.46] using HCit). Both biomarkers also had similar HRs for ESKD. The C-statistics were similar when adding each carbamylation biomarker to base models (e.g., for mortality models, the C-statistic was 0.725 [0.707-0.743] with C-Alb and 0.725 [0.707-0.743] with HCit, both compared to a base model 0.723). Similarities were also observed for the net reclassification improvement and integrated discrimination improvement metrics. CONCLUSIONS: C-Alb and HCit had similar performance across multiple prognostic assessments. The markers appear readily comparable in CKD epidemiological studies.


Subject(s)
Biomarkers , Citrulline , Protein Carbamylation , Renal Insufficiency, Chronic , Humans , Female , Citrulline/analogs & derivatives , Citrulline/blood , Male , Biomarkers/blood , Middle Aged , Renal Insufficiency, Chronic/blood , Aged , Prospective Studies , Risk Assessment , Kidney Failure, Chronic/blood , Prognosis , Proportional Hazards Models , Serum Albumin/metabolism
16.
Heart ; 110(11): 768-774, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569853

ABSTRACT

OBJECTIVE: The management of blood pressure (BP) in acute ischaemic stroke remains a subject of controversy. This investigation aimed to explore the relationship between 24-hour BP patterns following ischaemic stroke and clinical outcomes. METHODS: A cohort of 4069 patients who had an acute ischaemic stroke from 26 hospitals was examined. Five systolic BP trajectories were identified by using latent mixture modelling: trajectory category 5 (190-170 mm Hg), trajectory category 4 (180-140 mm Hg), trajectory category 3 (170-160 mm Hg), trajectory category 2 (155-145 mm Hg) and trajectory category 1 (150-130 mm Hg). The primary outcome was a composite outcome of death and major disability at 3 months poststroke. RESULTS: Patients with trajectory category 5 exhibited the highest risk, while those with trajectory category 1 had the lowest risk of adverse outcomes at 3-month follow-up. Compared with the patients in the trajectory category 5, adjusted ORs (95% CIs) for the primary outcome were 0.79 (0.58 to 1.10), 0.70 (0.53 to 0.93), 0.64 (0.47 to 0.86) and 0.47 (0.33 to 0.66) among patients in trajectory category 4, trajectory category 3, trajectory category 2 and trajectory category 1, respectively. Similar trends were observed for death, vascular events and the composite outcome of death and vascular events. CONCLUSION: Patients with persistently high BP at 180 mm Hg within 24 hours of ischaemic stroke onset had the highest risk, while those maintaining stable BP at a moderate-low level (150 mm Hg) or even a low level (137 mm Hg) had more favourable outcomes.


Subject(s)
Blood Pressure , Ischemic Stroke , Humans , Male , Female , Ischemic Stroke/physiopathology , Ischemic Stroke/mortality , Ischemic Stroke/diagnosis , Aged , Blood Pressure/physiology , Time Factors , Middle Aged , Risk Factors , Prognosis , Hypertension/physiopathology , Hypertension/complications , Risk Assessment/methods , Aged, 80 and over , Blood Pressure Monitoring, Ambulatory/methods
17.
Toxicol Appl Pharmacol ; 485: 116920, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582373

ABSTRACT

Asparaginase-associated pancreatitis (AAP) is a severe and potentially life-threatening drug-induced pancreas targeted toxicity in the combined chemotherapy of acute lymphoblastic leukemia among children and adolescents. The toxicological mechanism of AAP is not yet clear, and there are no effective preventive and treatment measures available clinically. Fibroblast growth factor 21 (FGF21) is a secretory hormone that regulates lipid, glucose, and energy metabolism balance. Acinar tissue is the main source of pancreatic FGF21 protein and plays an important role in maintaining pancreatic metabolic balance. In this study, we found that the decrease of FGF21 in pancreas is closely related to AAP. Pegaspargase (1 IU/g) induces widespread edema and inflammatory infiltration in the pancreas of rats/mice. The specific expression of FGF21 in the acinar tissue of AAP rats was significantly downregulated. Asparaginase caused dysregulation of the ATF4/ATF3/FGF21 axis in acinar tissue or cells, and thus mediated the decrease of FGF21. It greatly activated ATF3 in the acinar, which competed with ATF4 for the Fgf21 promoter, thereby inhibiting the expression of FGF21. Pharmacological replacement of FGF21 (1 mg/kg) or PERK inhibitors (GSK2656157, 25 mg/kg) can significantly mitigate the pancreatic tissue damage and reduce markers of inflammation associated with AAP, representing potential strategies for the prevention and treatment of AAP.


Subject(s)
Asparaginase , Fibroblast Growth Factors , Pancreas , Pancreatitis , eIF-2 Kinase , Animals , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Asparaginase/toxicity , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/pathology , Male , Rats , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Mice , Rats, Sprague-Dawley , Polyethylene Glycols/toxicity , Antineoplastic Agents/toxicity , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Mice, Inbred C57BL
18.
J Cancer ; 15(9): 2845-2865, 2024.
Article in English | MEDLINE | ID: mdl-38577615

ABSTRACT

Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) is a critical m6A reader. It encodes proteins that contain several KH domains, which are important in RNA binding, RNA synthesis and metabolism. Lots of researches have studied the malignant potential of m6A readers in tumors. However, the biological functional analysis of IGF2BP3 in hepatocellular carcinoma (HCC) and pan-cancer is not comprehensive. In this study, we used a bioinformatics approach to comprehensively analyze the significance of IGF2BP3 in HCC through analyzing its expression, mutation, prognosis, protein-protein interaction (PPI) network, functional enrichment, and the correlation with ferroptosis, stemness as well as immune modulation in HCC. IGF2BP3 presented a negative correlation with the ferroptosis molecule NFE2L2, and a positive correlation with the ferroptosis molecule SLC1A5 as well as the immune checkpoint HAVCR2. In addition, we also analyzed IGF2BP3 expression, prognosis and immune modulation in pan-cancer, revealing the prognostic value of IGF2BP3 in a variety of tumors. Finally, we verified the biological functions of IGF2BP3 in HCC through various experiments. The data showed that IGF2BP3 may enhance the proliferation, colony formation and invasion capacities of HCC cells, and IGF2BP3 is mainly positively correlated with the expression level of stemness marker SOX2. In conclusion, IGF2BP3 had a potential to be a new perspective biomarker in forecasting the immune response, ferroptosis, stemness and prognosis of HCC or even pan-cancer.

19.
Am J Med Sci ; 368(1): 9-17, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38556001

ABSTRACT

BACKGROUND: Favorable neighborhood-level social determinants of health (SDoH) are associated with lower cardiovascular disease risk. Less is known about their influence on cardioprotective behaviors. We evaluated the associations between neighborhood-level SDoH and cardioprotective behaviors among church members in Louisiana. METHODS: Participants were surveyed between November 2021 to February 2022, and were asked about health behaviors, aspects of their neighborhood, and home address (to link to census tract and corresponding social deprivation index [SDI] data). Logistic regression models were used to assess the relation of neighborhood factors with the likelihood of engaging in cardioprotective behaviors: 1) a composite of healthy lifestyle behaviors [fruit and vegetable consumption, physical activity, and a tobacco/nicotine-free lifestyle], 2) medication adherence, and 3) receipt of routine medical care within the past year. RESULTS: Participants (n = 302, mean age: 63 years, 77% female, 99% Black) were recruited from 12 churches in New Orleans. After adjusting for demographic and clinical factors, perceived neighborhood walkability or conduciveness to exercise (odds ratio [OR]=1.25; 95% CI: 1.03, 1.53), availability of fruits and vegetables (OR=1.23; 95% CI: 1.07, 1.42), and social cohesion (OR=1.55; 95% CI: 1.22, 1.97) were positively associated with the composite of healthy lifestyle behaviors. After multivariable adjustment, SDI was in the direction of association with all three cardioprotective behavior outcomes, but associations were not statistically significant. CONCLUSIONS: In this predominantly Black, church-based population, neighborhood-level SDoH including the availability of fruits and vegetables, walkability or conduciveness to exercise, and social cohesion were associated with cardioprotective behaviors. Findings reiterate the need to address adverse neighborhood-level SDoH in the design and implementation of health interventions.


Subject(s)
Health Behavior , Residence Characteristics , Social Determinants of Health , Humans , Female , Male , Middle Aged , Aged , New Orleans , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/epidemiology , Exercise , Louisiana
20.
J Transl Med ; 22(1): 306, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528587

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) play a pivotal role in reshaping the tumor microenvironment following radiotherapy. The mechanisms underlying this reprogramming process remain to be elucidated. METHODS: Subcutaneous Lewis lung carcinoma (LLC) murine model was treated with hypofrationated radiotherapy (8 Gy × 3F). Single-cell RNA sequencing was utilized to identify subclusters and functions of TAMs. Multiplex assay and enzyme-linked immunosorbent assay (ELISA) were employed to measure serum chemokine levels. Bindarit was used to inhibit CCL8, CCL7, and CCL2. The infiltration of TAMs after combination treatment with hypofractionated radiotherapy and Bindarit was quantified with flow cytometry, while the influx of CD206 and CCL8 was assessed by immunostaining. RESULTS: Transcriptome analysis identified a distinct subset of M2-like macrophages characterized by elevated Ccl8 expression level following hypofractionated radiotherapy in LLC-bearing mice. Remarkbly, hypofractionated radiotherapy not only promoted CCL8high macrophages infiltration but also reprogrammed them by upregulating immunosuppressive genes, thereby fostering an immunosuppressive tumor microenvironment. Additioinally, hypofractionated radiotherapy enhanced the CCL signaling pathway, augmenting the pro-tumorigenic functions of CCL8high macrophages and boosting TAMs recruitment. The adjunctive treatment combining hypofractionated radiotherapy with Bindarit effectively reduced M2 macrophages infiltration and prolonged the duration of local tumor control. CONCLUSIONS: Hypofractionated radiotherapy enhances the infiltration of CCL8high macrophages and amplifies their roles in macrophage recruitment through the CCL signaling pathway, leading to an immunosuppressive tumor microenvironment. These findings highlight the potential of targeting TAMs and introduces a novel combination to improve the efficacy of hypofractionated radiotherapy.


Subject(s)
Carcinoma, Lewis Lung , Macrophages , Animals , Mice , Carcinoma, Lewis Lung/radiotherapy , Carcinoma, Lewis Lung/pathology , Cell Line, Tumor , Indazoles/pharmacology , Macrophages/metabolism , Propionates/pharmacology , Sequence Analysis, RNA , Tumor Microenvironment/genetics , Single-Cell Analysis , Chemokine CCL8
SELECTION OF CITATIONS
SEARCH DETAIL
...