Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Oncol Lett ; 28(3): 413, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988449

ABSTRACT

T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.

2.
Acta Anatomica Sinica ; (6): 182-188, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015482

ABSTRACT

Objective To investigate the expression and role of Huntingtin-associated protein-1 (HAP-1) in the process of valproate acid (VP A) inducing neural stem cells (NSCs) into neurons. Methods The hippocampus NSCs of SD rats were isolated and cultured, Real-time PCR and Western blotting were used to detect HAP-1 mRNA and protein expression at day 0, day 1, day 3 and day 5 during the induction of VPA on NSCs differentiation into neurons ; Real-time PCR was used to detect the expression level of HAP-1 mRNA in multiple tissues of adult SD rats, as well as NSCs, neurons and astrocytes. After applying small interfering RNA technology to down-regulate the expression of HAP-1 mRNA in NSCs, Real-time PCR was used to detect the mRNA expression levels of neuron-specific molecules stathmin-2 ( Stmn-2), neuronal differentiation-1 (Neurod-1), microtubule-associated protein-2 (Map-2) and synapsin-1 (Syn-1), and Western blotting was used to detect the protein expression levels of neuron-specific marker β-tubulin III (Tuj-1). Immunofluorescence was used to detect the proportion of NSCs differentiated into Tuj-1 positive neurons, and to observe the development of neurons. Results At day 1 and day 3 after VPA treatment, the expression of HAP-1 mRNA and protein in the VPA group was significantly up-regulated; HAP-1 mRNA was predominantly expressed in the hippocampus, and its expression was higher in neurons, followed by NSCs, and minimally in astrocytes. After down-regulating HAP-1 with small interference technology, the proportion of NSCs differentiated into Tuj-1 positive neurons reduced, and neuron development became worse. Conclusion VPA may promote the differentiation of NSCs into neurons by up-regulating HAP-1 expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...