Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 17(7)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331110

ABSTRACT

Several known sesquiterpenoid quinones and quinols (1-9), and kauamide (10), a new polyketide-peptide containing an 11-membered heterocycle, were isolated from the extracts of the Hawaiian marine sponge Dactylospongia elegans. The planar structure of 10 was determined from spectroscopic analyses, and its relative and absolute configurations were established from density functional theory (DFT) calculations of the GIAO NMR shielding tensors, and advanced Marfey's analysis of the N-MeLeu residue, respectively. Compounds 1 and 3 showed moderate inhibition of ß-secretase 1 (BACE1), whereas 1-9 exhibited moderate to potent inhibition of growth of human glioma (U251) cells. Compounds 1-2 and 4-7 were also active against human pancreatic carcinoma (Panc-1) cells.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Porifera/chemistry , Sesquiterpenes/pharmacology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Aspartic Acid Endopeptidases/antagonists & inhibitors , Cell Line, Tumor , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Glioma/drug therapy , Glioma/pathology , Hawaii , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/isolation & purification , Heterocyclic Compounds/pharmacology , Humans , Hydroquinones/chemistry , Hydroquinones/isolation & purification , Hydroquinones/pharmacology , Molecular Structure , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Quinones/chemistry , Quinones/isolation & purification , Quinones/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Pancreatic Neoplasms
2.
J Phys Chem A ; 116(17): 4348-55, 2012 May 03.
Article in English | MEDLINE | ID: mdl-22500860

ABSTRACT

The Al(3)H(9) and Al(3)H(7) potential energy surfaces were explored using quantum chemistry calculations to investigate the H(2) loss mechanism from Al(3)H(9), which provide new insights into hydrogen production from bulk alane, [AlH(3)](x), a possible energy storage material. We present results of B3LYP/6-311++G(d,p) calculations for the various Al(3)H(9) and Al(3)H(7) optimized local minima and transition state structures along with some reaction pathways for their interconversion. We find the energy for Al(3)H(9) decomposition into Al(2)H(6) and AlH(3) is slightly lower than that for H(2) loss and Al(3)H(7) formation, but the calculations show that H(2) loss from Al(3)H(9) is a lower energy process than for losing hydrogen from either Al(2)H(6) or AlH(3). We found four transition state structures and reaction pathways for Al(3)H(9) → Al(3)H(7) + H(2), where the lowest energy activation barrier is around 25-73 kJ/mol greater than the experimental value for H(2) loss from bulk alane. Intrinsic reaction coordinate calculations show that the H(2) loss pathway involves considerable rearrangement of the H atom positions around a single Al center. Three of the pathways start with the formation of an AlH(3) moiety, which then enables a terminal H on the AlH(3) to get within 1.1 to 1.2 Šof a nearby bridging H atom. The bridging and terminal H atoms eventually combine to form H(2) and leave Al(3)H(9). One implication of these H(2) loss reaction pathways is that, since the H atoms in bulk alanes are all at bridging positions, if a similar H(2) loss mechanism were to apply to bulk alane, then H(2) loss would most likely occur on the bulk alane surface or at a defect site where there should be more terminal H atoms available for reaction with nearby bridging H atoms.

3.
Phys Chem Chem Phys ; 14(14): 4942-58, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22382393

ABSTRACT

We have theoretically investigated how the low-energy conformers of the neutral and the zwitterionic forms of glycine as well as methylcarbamic acid are stabilized by the presence water. The MP2/6-311++G(d,p) method was utilized to conduct calculations on glycine and methylcarbamic acid in both isolated clusters and in clusters embedded in the conductor-like polarizable continuum model (C-PCM), where the clusters explicitly contain between one and ten water molecules. The neutral forms of glycine and methylcarbamic acid were found to have similar hydration energies, whereas the neutral methylcarbamic acid was determined to be approximately 32 kJ mol(-1) more stable than the neutral glycine in the isolated clusters and 30 kJ mol(-1) more stable in the C-PCM embedded clusters. Both the number and strength of the hydrogen bonding interactions between water and the zwitterions drive the stability. This lowers the relative energy of the glycine zwitterion from 50 kJ mol(-1) above neutral glycine, when there are two water molecules in the clusters to 11 kJ mol(-1) below for the clusters containing ten water molecules. For the methylcarbamic acid clusters with two water molecules, the zwitterion is 51 kJ mol(-1) higher in energy than the neutral form, but it remains 13 kJ mol(-1) above the neutral methylcarbamic acid in the clusters containing ten water molecules. When the bulk water environment is simulated by the C-PCM calculations, we find both the methylcarbamic acid and glycine zwitterionic forms have similar energies at 20 kJ mol(-1) above the neutral methylcarbamic acid energy and 10 kJ mol(-1) lower than the neutral glycine energy. Although neither methylcarbamic acid nor glycine have been detected in the interstellar medium yet, our findings indicate that methylcarbamic acid is the more stable product from methylamine and carbon dioxide reactions in a water ice. This suggests that methylcarbamic acid likely plays a role in the intermediate steps if glycine is formed in the interstellar medium.


Subject(s)
Carbamates/chemistry , Glycine/chemistry , Models, Molecular , Water/chemistry , Cluster Analysis , Hydrogen Bonding , Ions/chemistry , Thermodynamics
4.
Phys Chem Chem Phys ; 13(35): 15774-84, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21687849

ABSTRACT

We have theoretically investigated the low energy conformers of neutral glycine (NH(2)CH(2)COOH) and its isomer methylcarbamic acid (CH(3)NHCOOH) in the gas phase. A total of 16 different levels of the theory, including CCSD(T), MP2 and B3LYP methods with various Pople and Dunning type basis sets with and without polarization and diffuse functions were used. We found eight low energy glycine conformers, where the heavy atoms in three have a planar backbone, and four low energy methylcarbamic acid conformers all with non-planar backbones. Interestingly at all levels of theory, we found that the most stable methylcarbamic acid conformer is significantly lower in energy than the lowest energy glycine conformer. The MP2 level and single point CCSD(T) calculations show the lowest energy methylcarbamic acid conformer to be between 31 to 37 kJ mol(-1) lower in energy than the lowest energy glycine conformer. These calculations suggest that methylcarbamic acid might serve as a precursor to glycine formation in the Interstellar Medium (ISM). We also report the theoretical harmonic vibrational frequencies, infrared intensities, moment of inertia, rotational constants and dipole moments for all of the conformers. In order to understand how glycine or methylcarbamic acid might be formed in the ISM, larger calculations which model glycine or its isomer interacting with several surrounding molecules, such as water, are needed. We demonstrate that B3LYP method should provide a reliable and computationally practical approach to modeling these larger systems.


Subject(s)
Carbamates/chemistry , Glycine/chemistry , Extraterrestrial Environment/chemistry , Isomerism , Models, Chemical , Models, Molecular , Molecular Conformation
5.
Phys Chem Chem Phys ; 13(23): 11083-98, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21311787

ABSTRACT

We investigated theoretically the interaction between methylamine (CH(3)NH(2)) and carbon dioxide (CO(2)) in the presence of water (H(2)O) molecules thus simulating the geometries of various methylamine-carbon dioxide complexes (CH(3)NH(2)/CO(2)) relevant to the chemical processing of icy grains in the interstellar medium (ISM). Two approaches were followed. In the amorphous water phase approach, structures of methylamine-carbon dioxide-water [CH(3)NH(2)/CO(2)/(H(2)O)(n)] clusters (n = 0-20) were studied using density functional theory (DFT). In the crystalline water approach, we simulated methylamine and carbon dioxide interactions on a fragment of the crystalline water ice surface in the presence of additional water molecules in the CH(3)NH(2)/CO(2) environment using DFT and effective fragment potentials (EFP). Both the geometry optimization and vibrational frequency analysis results obtained from these two approaches suggested that the surrounding water molecules which form hydrogen bonds with the CH(3)NH(2)/CO(2) complex draw the carbon dioxide closer to the methylamine. This enables, when two or more water molecules are present, an electron transfer from methylamine to carbon dioxide to form the methylcarbamic acid zwitterion, CH(3)NH(2)(+)CO(2)(-), in which the carbon dioxide is bent. Our calculations show that the zwitterion is formed without involving any electronic excitation on the ground state surface; this structure is only stable in the presence of water, i.e. in a methyl amine-carbon dioxide-water ice. Notably, in the vibrational frequency calculations on the methylcarbamic acid zwitterion and two water molecules we find the carbon dioxide asymmetric stretch is drastically red shifted by 435 cm(-1) to 1989 cm(-1) and the carbon dioxide symmetric stretch becomes strongly infrared active. We discuss how the methylcarbamic acid zwitterion CH(3)NH(2)(+)CO(2)(-) might be experimentally and astronomically identified by its asymmetric CO(2) stretching mode using infrared spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...