Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(20): 58998-59012, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37000392

ABSTRACT

The development of efficient photocatalysts for the photodegradation of organic dyes in wastewater is highly worthwhile. Herein, the nanoemulsion tactic was utilized to synthesize BixSn6-2xSy (0.33 ≤ x ≤ 2.95) photocatalysts with morphological structures that changed from nanowhiskers to quantum dots (QDs). The optical properties of these materials were examined by UV-visible absorbance spectroscopy and photoluminescence, while Mott-Schottky analysis was utilized to study their electronic properties. BixSn6-2xSy materials exhibit appreciable absorption in the UV-visible light range with a direct band gap that increases from 1.23 to 1.46 eV. Both crystal structure and composition greatly affect the photocatalytic activity of BixSn6-2xSy semiconductors. Among the various synthesized photocatalysts, BiSn4S4.5 can efficiently photodegrade methylene blue dye (MB) in the shortest time under UV-visible light. The photocatalytic activity is positively affected by the change of crystal structure from orthorhombic to cubic symmetry. Based on the Mott-Schottky plots, the flat band potential (Efb) and the semiconductor behavior of the fabricated BixSn6-2xSy nanomaterials were determined. The obtained Efb values for SnS, Bi0.33Sn5.34S5.8, BiSn4S5.5, and Bi2.14Sn1.71S4.7 are -0.18 V, -0.42 V, -0.53 V, and -0.51 V (vs. Ag/AgCl), respectively. The Efb value is clearly shifted towards more negative potential values with increasing the Bi molar ratio (x). However, Bi2.95Sn0.1S4.5 semiconductor was found to be of n-type character, having a positive Efb value of +0.66 V (vs. Ag/AgCl). Photocurrent and EIS responses confirm the high stability and photocatalytic activity of BiSn4S5.5, which also achieves the lowest charge transfer resistance. The modified electronic properties of the BixSn6-2xSy semiconductors significantly improve their photocatalytic activity, rendering them to be promising absorbers for sunlight harvesting applications.


Subject(s)
Quantum Dots , Water , Methylene Blue/chemistry , Catalysis , Semiconductors
2.
Polymers (Basel) ; 14(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36433092

ABSTRACT

The development of wound dressing materials with appropriate specifications is still a challenge to overcome the current limitations of conventional medical bandages. In this regard, simple and fast methods are highly recommended, such as film casting. In addition, deliverable nanoparticles that can act to accelerate wound integration, such as samarium oxide (Sm2O3) and magnesium oxide (MgO), might represent a potential design with a novel compositional combination. In the present research, the casted film of cellulose acetate (CA) was mixed with different ratios of metal oxides, such as samarium oxide (Sm2O3) and magnesium oxide (MgO). The tests used for the film examination were X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM graphs of CA films represent the surface morphology of Sm2O3@CA, MgO@CA, and Sm2O3/MgO/GO@CA. It was found that the scaffolds' surface contained a high porosity ratio with diameters of 1.5-5 µm. On the other hand, the measurement of contact angle exhibits a variable trend starting from 27° to 29° for pristine CA and Sm2O3/MgO/GO@CA. The cell viability test exhibits a noticeable increase in cell growth with a decrease in the concentration. In addition, the IC50 was determined at 6 mg/mL, while the concentration of scaffolds of 20 mg/mL caused cellular growth to be around 106%.

3.
Polymers (Basel) ; 14(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365727

ABSTRACT

Due to their thermal stability characteristics, polymer/composite materials have typically been employed as corrosion inhibitors in a variety of industries, including the maritime, oil, and engineering sectors. Herein, protective films based on binary ZnO-NiO@polyaniline (ZnNiO@PANE) nanocomposite were intended with a respectable yield. The produced nanocomposite was described using a variety of spectroscopic characterization methods, including dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) approaches, in addition to other physicochemical methods, including X-ray powder diffraction (XRD), transmission Electron Microscopy (TEM), field emission scanning electron microscopy (FESEM), and selected area electron diffraction (SAED). By using open-circuit potentials (OCP) vs. time, electrochemical impedance spectroscopic (EIS), and potentiodynamic polarization (PDP) methods, the inhibitory effects of individual PANE and ZnNiO@PANE on the mild steel alloy corrosion in HCl/NaCl solution were assessed. The ZnNiO@PANE composite performed as mixed-type inhibitors, according to PDP findings. PANE polymer and ZnNiO@PANE composite at an optimal dose of 200 mg/L each produced protective abilities of 84.64% and 97.89%, respectively. The Langmuir isotherm model is used to explain the adsorption of ZnNiO@PANE onto MS alloy. DFT calculations showed that the prepared materials' efficiency accurately reflects their ability to contribute electrons, whereas Monte Carlo (MC) simulations showed that the suitability and extent of adsorption of the ZnNiO@PANE molecule at the metal interface determine the materials' corrosion protection process.

5.
Sci Rep ; 12(1): 13209, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915138

ABSTRACT

The application of green and sustainable anticorrosive coatings is becoming of upsurge interest for the protection of metallic materials in aggressive environments. Herein, a stable crystalline chitosan/gum Arabic composite (CGAC) nanopowder was successfully synthesized and characterized by various methods. The CGAC nanopowder with different doses (25, 50, 100, and 200 ppm) was used to coat mild steel samples and examined its anticorrosion ability in 3.5 wt.% NaCl solution using gravimetric, electrochemical measurements, and surface characterization techniques. All methods yielded consistent results revealing that nanocomposite coatings can impart good anticorrosive properties to the steel substrate. The obtained protection efficiency was enhanced with increasing CGAC dose in the applied surface layer achieving 96.6% for the 200 ppm-coating. SEM and AFM surface morphologies of uncoated and coated samples after the inundation in the saline solution showed that CGAC coating can block the active corrosive sites on the steel surface, and prevent the aggressive Cl- ions from attacking the metallic substrate. The water droplet contact angle gave further support as it increased from 50.7° for the pristine uncoated surface to 101.2° for the coated one. The current research demonstrates a promising natural and reliable nanocomposite coating for protecting mild steel structures in the marine environment.


Subject(s)
Chitosan , Nanocomposites , Chitosan/chemistry , Coated Materials, Biocompatible/chemistry , Gum Arabic , Nanocomposites/chemistry , Saline Solution , Steel/chemistry
6.
ACS Omega ; 7(1): 1021-1034, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036766

ABSTRACT

Developing appropriate protecting coatings for Mg alloy applications is a challenging issue. Herein, nanohydroxyapatite (nanoHAP) powder was first fabricated by the simple hydrothermal microwave-assisted method. A direct current electrophoresis deposition (EPD) of nanoHAP composite coatings on Mg-3Zn-0.8Ca magnesium alloy was successfully executed. Three suspensions with HAP-dispersive resin solution (ETELAC) ratios (in wt %) of 5-5, 5-2.5, and 2.5-2.5 were chosen for optimizing the effect of applied voltage, deposition time, and stirring mode and rates on the EPD process. NanoHAP composite coatings were applied on each sample in single- and double-run depositions. The results revealed that the maximum weight gain on the coated samples was obtained in 5-5 suspension at 50 V under 150 rpm mechanical stirring rate. Surface examination indicated crack-free coating formation with varying grain sizes. Adhesion tests demonstrated high interconnection between the obtained nanocomposite coatings and the alloy substrate. Electrochemical evaluation measurements in SBF at 37 °C indicated that the corrosion resistance of any coated sample is always superior compared to that of the uncoated bare substrate. It was suggested that the EPD of nanoHAP/ETELAC composite coatings on Mg-Zn-Ca alloy can be a good solution for protecting the alloy from the attack of the aggressive ions bound in the SBF environment.

7.
Sci Rep ; 9(1): 2319, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30783184

ABSTRACT

The impact of AEO7 surfactant on the corrosion inhibition of carbon steel (C-steel) in 0.5 M HCl solution at temperatures between 20 °C and 50 °C was elucidated using weight loss and different electrochemical techniques. The kinetics and thermodynamic parameters of the corrosion and inhibition processes were reported. The corrosion inhibition efficiency (IE%) improved as the concentration of AEO7 increased. In addition, a synergistic effect was observed when a concentration of 1 × 10-3 mol L-1 or higher of potassium iodide (KI) was added to 40 µmol L-1 of the AEO7 inhibitor where the corrosion IE% increased from 87.4% to 99.2%. Also, it was found that the adsorption of AEO7 surfactant on C-steel surface followed the Freundlich isotherm. Furthermore, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements indicated that AEO7 was physically adsorbed on the steel surface. The surface topography was examined using an optical profilometer, an atomic force microscope (AFM), and a scanning electron-microscope (SEM) coupled with an energy dispersion X-ray (EDX) unit. Quantum chemical calculations based on the density functional theory were performed to understand the relationship between the corrosion IE% and the molecular structure of the AEO7 molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...