Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 20(1): 246, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891657

ABSTRACT

BACKGROUND: Persistent SARS-CoV-2 infection in immunocompromised hosts is thought to contribute to viral evolution by facilitating long-term natural selection and viral recombination in cases of viral co-infection or superinfection. However, there are limited data on the longitudinal intra-host population dynamics of SARS-CoV-2 co-infection/superinfection, especially in pediatric populations. Here, we report a case of Delta-Omicron superinfection in a hospitalized, immunocompromised pediatric patient. METHODS: We conducted Illumina whole genome sequencing (WGS) for longitudinal specimens to investigate intra-host dynamics of SARS-CoV-2 strains. Topoisomerase PCR cloning of Spike open-reading frame and Sanger sequencing of samples was performed for four specimens to validate the findings. Analysis of publicly available SARS-CoV-2 sequence data was performed to investigate the co-circulation and persistence of SARS-CoV-2 variants. RESULTS: Results of WGS indicate the patient was initially infected with the SARS-CoV-2 Delta variant before developing a SARS-CoV-2 Omicron variant superinfection, which became predominant. Shortly thereafter, viral loads decreased below the level of detection before resurgence of the original Delta variant with no residual trace of Omicron. After 54 days of persistent infection, the patient tested negative for SARS-CoV-2 but ultimately succumbed to a COVID-19-related death. Despite protracted treatment with remdesivir, no antiviral resistance mutations emerged. These results indicate a unique case of persistent SARS-CoV-2 infection with the Delta variant interposed by a transient superinfection with the Omicron variant. Analysis of publicly available sequence data suggests the persistence and ongoing evolution of Delta subvariants despite the global predominance of Omicron, potentially indicative of continued transmission in an unknown population or niche. CONCLUSION: A better understanding of SARS-CoV-2 intra-host population dynamics, persistence, and evolution during co-infections and/or superinfections will be required to continue optimizing patient care and to better predict the emergence of new variants of concern.


Subject(s)
COVID-19 , Coinfection , Superinfection , Humans , Child , SARS-CoV-2/genetics , Immunocompromised Host
2.
Transplantation ; 104(5): e118-e124, 2020 05.
Article in English | MEDLINE | ID: mdl-31996662

ABSTRACT

Cytomegalovirus (CMV) is a ß-herpesvirus that establishes lifelong latency in infected hosts. Following transplantation of a latently infected organ, reactivation can occur and consists of a spectrum of clinically apparent syndromes from mild symptoms to tissue-invasive, resulting in both direct and indirect sequelae. Before the advent of effective antiviral agents, the primary treatment was reduction in immunosuppression (IS). While antiviral agents provide effective prophylaxis, there are several important caveats associated with their use, including drug toxicity and resistance. The traditional view attributes CMV reactivation and the ensuing clinical disease primarily to IS, either intrinsic to disease-related immune compromise or from the extrinsic administration of IS agents. However, previous data from both animal models and human subjects showed that inflammatory signals could induce upregulation of latent viral gene expression. New data demonstrate that ischemia/reperfusion is necessary and sufficient to induce CMV reactivation following murine transplantation of a latently infected graft. In this article, we review a growing body of evidence that suggests that reactivation of both human CMV and murine CMV is first triggered by molecular events that activate CMV gene expression and lytic infection and viral dissemination are then facilitated by IS. The initial activation of viral gene expression may be mediated by oxidative stress, DNA damage, or inflammatory cytokines, and these factors may act synergistically. New therapeutic approaches are needed to capture this complex array of targets.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Graft Rejection/immunology , Immunosuppressive Agents/therapeutic use , Kidney Transplantation , Virus Activation/immunology , Virus Latency/immunology , Animals , Antibodies, Viral/immunology , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Graft Rejection/prevention & control , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...