Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 12: 709861, 2021.
Article in English | MEDLINE | ID: mdl-34475873

ABSTRACT

BACKGROUND: Immune hyperactivity is an important contributing factor to the morbidity and mortality of COVID-19 infection. Nasal administration of anti-CD3 monoclonal antibody downregulates hyperactive immune responses in animal models of autoimmunity through its immunomodulatory properties. We performed a randomized pilot study of fully-human nasal anti-CD3 (Foralumab) in patients with mild to moderate COVID-19 to determine if its immunomodulatory properties had ameliorating effects on disease. METHODS: Thirty-nine outpatients with mild to moderate COVID-19 were recruited at Santa Casa de Misericordia de Santos in Sao Paulo State, Brazil. Patients were randomized to three cohorts: 1) Control, no Foralumab (n=16); 2) Nasal Foralumab (100ug/day) given for 10 consecutive days with 6 mg dexamethasone given on days 1-3 (n=11); and 3) Nasal Foralumab alone (100ug/day) given for 10 consecutive days (n=12). Patients continued standard of care medication. RESULTS: We observed reduction of serum IL-6 and C-reactive protein in Foralumab alone vs. untreated or Foralumab/Dexa treated patients. More rapid clearance of lung infiltrates as measured by chest CT was observed in Foralumab and Foralumab/Dexa treated subjects vs. those that did not receive Foralumab. Foralumab treatment was well-tolerated with no severe adverse events. CONCLUSIONS: This pilot study suggests that nasal Foralumab is well tolerated and may be of benefit in treatment of immune hyperactivity and lung involvement in COVID-19 disease and that further studies are warranted.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Pneumonia/therapy , Administration, Intranasal , Adolescent , Adult , Antibodies, Monoclonal/administration & dosage , Biomarkers , C-Reactive Protein/analysis , COVID-19/physiopathology , COVID-19/therapy , Cohort Studies , Female , Humans , Immunity/drug effects , Interleukin-6/blood , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Middle Aged , Outpatients/statistics & numerical data , Pilot Projects , Pneumonia/prevention & control , Young Adult
3.
PLoS One ; 15(5): e0232822, 2020.
Article in English | MEDLINE | ID: mdl-32392233

ABSTRACT

Populations often show complex spatial and temporal dynamics, creating challenges in designing and implementing effective surveys. Inappropriate sampling designs can potentially lead to both under-sampling (reducing precision) and over-sampling (through the extensive and potentially expensive sampling of correlated metrics). These issues can be difficult to identify and avoid in sample surveys of fish populations as they tend to be costly and comprised of multiple levels of sampling. Population estimates are therefore affected by each level of sampling as well as the pathway taken to analyze such data. Though simulations are a useful tool for exploring the efficacy of specific sampling strategies and statistical methods, there are a limited number of tools that facilitate the simulation testing of a range of sampling and analytical pathways for multi-stage survey data. Here we introduce the R package SimSurvey, which has been designed to simplify the process of simulating surveys of age-structured and spatially-distributed populations. The package allows the user to simulate age-structured populations that vary in space and time and explore the efficacy of a range of built-in or user-defined sampling protocols to reproduce the population parameters of the known population. SimSurvey also includes a function for estimating the stratified mean and variance of the population from the simulated survey data. We demonstrate the use of this package using a case study and show that it can reveal unexpected sources of bias and be used to explore design-based solutions to such problems. In summary, SimSurvey can serve as a convenient, accessible and flexible platform for simulating a wide range of sampling strategies for fish stocks and other populations that show complex structuring. Various statistical approaches can then be applied to the results to test the efficacy of different analytical approaches.


Subject(s)
Biometry/methods , Models, Statistical , Population , Animals , Bias , Computer Simulation , Data Interpretation, Statistical , Humans , Surveys and Questionnaires
4.
J Med Chem ; 62(17): 7643-7655, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31368705

ABSTRACT

Bruton's tyrosine kinase (BTK) inhibitors such as ibrutinib hold a prominent role in the treatment of B cell malignancies. However, further refinement is needed to this class of agents, particularly in terms of adverse events (potentially driven by kinase promiscuity), which preclude their evaluation in nononcology indications. Here, we report the discovery and preclinical characterization of evobrutinib, a potent, obligate covalent inhibitor with high kinase selectivity. Evobrutinib displayed sufficient preclinical pharmacokinetic and pharmacodynamic characteristics which allowed for in vivo evaluation in efficacy models. Moreover, the high selectivity of evobrutinib for BTK over epidermal growth factor receptor and other Tec family kinases suggested a low potential for off-target related adverse effects. Clinical investigation of evobrutinib is ongoing in several autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Drug Discovery , Immune System Diseases/drug therapy , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Administration, Oral , Agammaglobulinaemia Tyrosine Kinase/metabolism , Dose-Response Relationship, Drug , Humans , Immune System Diseases/metabolism , Molecular Structure , Piperidines/administration & dosage , Piperidines/chemistry , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...