Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 589(7841): 293-298, 2021 01.
Article in English | MEDLINE | ID: mdl-33299182

ABSTRACT

H1 linker histones are the most abundant chromatin-binding proteins1. In vitro studies indicate that their association with chromatin determines nucleosome spacing and enables arrays of nucleosomes to fold into more compact chromatin structures. However, the in vivo roles of H1 are poorly understood2. Here we show that the local density of H1 controls the balance of repressive and active chromatin domains by promoting genomic compaction. We generated a conditional triple-H1-knockout mouse strain and depleted H1 in haematopoietic cells. H1 depletion in T cells leads to de-repression of T cell activation genes, a process that mimics normal T cell activation. Comparison of chromatin structure in normal and H1-depleted CD8+ T cells reveals that H1-mediated chromatin compaction occurs primarily in regions of the genome containing higher than average levels of H1: the chromosome conformation capture (Hi-C) B compartment and regions of the Hi-C A compartment marked by PRC2. Reduction of H1 stoichiometry leads to decreased H3K27 methylation, increased H3K36 methylation, B-to-A-compartment shifting and an increase in interaction frequency between compartments. In vitro, H1 promotes PRC2-mediated H3K27 methylation and inhibits NSD2-mediated H3K36 methylation. Mechanistically, H1 mediates these opposite effects by promoting physical compaction of the chromatin substrate. Our results establish H1 as a critical regulator of gene silencing through localized control of chromatin compaction, 3D genome organization and the epigenetic landscape.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/genetics , Epigenesis, Genetic , Histones/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Chromatin/chemistry , Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Gene Silencing , Histones/chemistry , Lymphocyte Activation/genetics , Male , Methylation , Mice , Mice, Knockout
3.
Proc Natl Acad Sci U S A ; 117(25): 14251-14258, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513732

ABSTRACT

Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Repetitive Sequences, Nucleic Acid/physiology , Animals , Epigenomics , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Methylation , Methyltransferases/metabolism , Mice , Mouse Embryonic Stem Cells/metabolism , Repressor Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 116(36): 17841-17847, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31431533

ABSTRACT

Pu.1 is an ETS family transcription factor (TF) that plays critical roles in erythroid progenitors by promoting proliferation and blocking terminal differentiation. However, the mechanisms controlling expression and down-regulation of Pu.1 during early erythropoiesis have not been defined. In this study, we identify the actions of Runx1 and Pu.1 itself at the Pu.1 gene Upstream Regulatory Element (URE) as major regulators of Pu.1 expression in Burst-Forming Unit erythrocytes (BFUe). During early erythropoiesis, Runx1 and Pu.1 levels decline, and chromatin accessibility at the URE is lost. Ectopic expression of Runx1 or Pu.1, both of which bind the URE, prevents Pu.1 down-regulation and blocks terminal erythroid differentiation, resulting in extensive ex vivo proliferation and immortalization of erythroid progenitors. Ectopic expression of Runx1 in BFUe lacking a URE fails to block terminal erythroid differentiation. Thus, Runx1, acting at the URE, and Pu.1 itself directly regulate Pu.1 levels in erythroid cells, and loss of both factors is critical for Pu.1 down-regulation during terminal differentiation. The molecular mechanism of URE inactivation in erythroid cells through loss of TF binding represents a distinct pattern of Pu.1 regulation from those described in other hematopoietic cell types such as T cells which down-regulate Pu.1 through active repression. The importance of down-regulation of Runx1 and Pu.1 in erythropoiesis is further supported by genome-wide analyses showing that their DNA-binding motifs are highly overrepresented in regions that lose chromatin accessibility during early erythroid development.


Subject(s)
Cell Differentiation/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Gene Expression Regulation , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Animals , Chromatin/genetics , Chromatin/metabolism , Erythropoiesis/genetics , Mice , RAW 264.7 Cells , Response Elements , Transcription, Genetic
5.
Genes Dev ; 31(6): 603-616, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28404631

ABSTRACT

Eukaryotic DNA replicates asynchronously, with discrete genomic loci replicating during different stages of S phase. Drosophila larval tissues undergo endoreplication without cell division, and the latest replicating regions occasionally fail to complete endoreplication, resulting in underreplicated domains of polytene chromosomes. Here we show that linker histone H1 is required for the underreplication (UR) phenomenon in Drosophila salivary glands. H1 directly interacts with the Suppressor of UR (SUUR) protein and is required for SUUR binding to chromatin in vivo. These observations implicate H1 as a critical factor in the formation of underreplicated regions and an upstream effector of SUUR. We also demonstrate that the localization of H1 in chromatin changes profoundly during the endocycle. At the onset of endocycle S (endo-S) phase, H1 is heavily and specifically loaded into late replicating genomic regions and is then redistributed during the course of endoreplication. Our data suggest that cell cycle-dependent chromosome occupancy of H1 is governed by several independent processes. In addition to the ubiquitous replication-related disassembly and reassembly of chromatin, H1 is deposited into chromatin through a novel pathway that is replication-independent, rapid, and locus-specific. This cell cycle-directed dynamic localization of H1 in chromatin may play an important role in the regulation of DNA replication timing.


Subject(s)
Chromatin/metabolism , Drosophila/genetics , Endoreduplication , Histones/metabolism , Animals , DNA-Binding Proteins/metabolism , Drosophila/growth & development , Drosophila Proteins/metabolism , Heterochromatin/metabolism , Larva/genetics , Larva/metabolism , S Phase/genetics , Salivary Glands/metabolism
6.
Biochem Mol Biol Educ ; 39(3): 191-5, 2011.
Article in English | MEDLINE | ID: mdl-21618382

ABSTRACT

The pace of discovery in biochemistry and genetics and its effect on clinical medicine places new curricular challenges in medical school education. We sought to evaluate students' understanding of neurogenetics and its clinical applications to design a pilot curriculum into the clinical neurology clerkship. We utilized a needs assessment and a written examination to evaluate the genetics knowledge of 81 third- and fourth-year medical students. The needs assessment surveyed students' self-perceptions of their own understanding of basic and clinically related genetic principles and clinical skills, as well as the most effective educational methods. Medical students reported more competence with basic science learned during the preclinical years than clinical concepts, and they demonstrated relatively low knowledge levels in clinical neurogenetics concepts on the examination, with an average of 29% correct on questions pertaining to genetic counseling compared with 82% correct with regard to inheritance patterns. Common, cross-specialty clinical skills were attained (e.g. internet search, family histories), while at least half of students reported minimal understanding or awareness of key genetics websites (e.g. OMIM) and indications for support group recommendations and genetics referrals. Teaching these more specific genetics skills and concepts needs to be emphasized in the clinical curriculum.


Subject(s)
Clinical Competence , Educational Measurement , Genetics/education , Knowledge , Nervous System Physiological Phenomena/genetics , Students, Medical , Adult , Clinical Competence/statistics & numerical data , Comprehension , Curriculum , Education, Medical/methods , Female , Humans , Male , Neuroendocrinology/education , Students, Medical/psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...