Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 12(39): 12959-12970, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34745526

ABSTRACT

Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure-function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra in situ from a small area of crystal. The output reports on active site speciation via the vibrational stretching band positions of the endogenous CO and CN- ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle.

2.
Anal Chem ; 88(13): 6666-71, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27269716

ABSTRACT

We describe a method for addressing redox enzymes adsorbed on a carbon electrode using synchrotron infrared microspectroscopy combined with protein film electrochemistry. Redox enzymes have high turnover frequencies, typically 10-1000 s(-1), and therefore, fast experimental triggers are needed in order to study subturnover kinetics and identify the involvement of transient species important to their catalytic mechanism. In an electrochemical experiment, this equates to the use of microelectrodes to lower the electrochemical cell constant and enable changes in potential to be applied very rapidly. We use a biological cofactor, flavin mononucleotide, to demonstrate the power of synchrotron infrared microspectroscopy relative to conventional infrared methods and show that vibrational spectra with good signal-to-noise ratios can be collected for adsorbed species with low surface coverages on microelectrodes with a geometric area of 25 × 25 µm(2). We then demonstrate the applicability of synchrotron infrared microspectroscopy to adsorbed proteins by reporting potential-induced changes in the flavin mononucleotide active site of a flavoenzyme. The method we describe will allow time-resolved spectroscopic studies of chemical and structural changes at redox sites within a variety of proteins under precise electrochemical control.


Subject(s)
Electrochemical Techniques , Flavin Mononucleotide/chemistry , Spectrophotometry, Infrared , Biocatalysis , Catalytic Domain , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Oxidation-Reduction , Quinone Reductases/chemistry , Quinone Reductases/metabolism , Soot/chemistry , Synchrotrons
3.
Angew Chem Int Ed Engl ; 54(24): 7110-3, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25925315

ABSTRACT

A novel in situ IR spectroscopic approach is demonstrated for the characterization of hydrogenase during catalytic turnover. E. coli hydrogenase 1 (Hyd-1) is adsorbed on a high surface-area carbon electrode and subjected to the same electrochemical control and efficient supply of substrate as in protein film electrochemistry during spectral acquisition. The spectra reveal that the active site state known as Ni-L, observed in other NiFe hydrogenases only under illumination or at cryogenic temperatures, can be generated reversibly in the dark at ambient temperature under both turnover and non-turnover conditions. The observation that Ni-L is present at all potentials during turnover under H2 suggests that the final steps in the catalytic cycle of H2 oxidation by Hyd-1 involve sequential proton and electron transfer via Ni-L. A broadly applicable IR spectroscopic technique is presented for addressing electrode-adsorbed redox enzymes under fast catalytic turnover.


Subject(s)
Hydrogen/chemistry , Hydrogenase/metabolism , Nickel/chemistry , Biocatalysis , Catalytic Domain , Electrochemical Techniques , Electrodes , Electron Spin Resonance Spectroscopy , Electron Transport , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Hydrogen/metabolism , Hydrogenase/chemistry , Ligands , Oxidation-Reduction , Protons , Spectrophotometry, Infrared
4.
Phys Chem Chem Phys ; 15(19): 7055-9, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23552374

ABSTRACT

We report a versatile infrared spectroscopic method for studying redox chemistry of metalloproteins, and demonstrate for the first time electrochemically-induced changes to the active site of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha. A carbon particle network working electrode allows control over a wide potential window without the need for solution mediators.

5.
Faraday Discuss ; 148: 345-57; discussion 421-41, 2011.
Article in English | MEDLINE | ID: mdl-21322492

ABSTRACT

Direct electrochemical methods have been productive in revealing mechanistic details of catalysis by a range of metalloenzymes including hydrogenases and carbon and nitrogen cycling enzymes. In this approach, termed protein film electrochemistry, the protein is attached or adsorbed on the electrode surface and exchanges electrons directly, providing precise control over redox states or catalysis and avoiding diffusion-limited electron transfer. The 'edge' surface of pyrolytic graphite has proved to be a particularly good surface for adsorption of proteins in electroactive conformations. We now describe development of an approach that combines the precise control achieved in direct electrochemical measurements at a graphite electrode with surface infrared (IR) spectroscopic analysis of chemistry occurring at metallocentres in proteins. Hydrogenases are of particular interest: their unusual organo-metallic active sites--iron or nickel-iron centres coordinated by CO and CN(-)--give rise to IR v(CO) and v(CN) bands that are detected readily because these ligands are strong vibrational oscillators and are sensitive to changes in electron density and coordination at the metals. Small diatomic species also bind as exogenous ligands (as substrate, product, activator or inhibitor) to a range of other important metalloproteins, and understanding their reactivity and binding selectivity is critical in building up a multidimensional picture of enzyme chemistry and evolutionary history. The surface IR spectroelectrochemical approach we describe is based around Attenuated Total Reflectance (ATR) mode sampling of a film of pyrolytic graphite particles modified with a protein of interest. The particle network extends the electrode into three-dimensional space, providing sufficient adsorbed protein for spectroscopic analysis under precise electrochemical control. This strategy should open up new opportunities for detection of redox-dependent chemistry at metal centres in proteins, including short-lived catalytic intermediates and time-resolved details of catalysis and inhibition.


Subject(s)
Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Metalloproteins/chemistry , Spectrophotometry, Infrared/methods , Catalysis , Catalytic Domain , Electrochemistry , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...