Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
FASEB J ; 15(1): 16-18, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11099491

ABSTRACT

The abnormal accumulation of the amyloid beta protein (Abeta) has been implicated as an early and critical event in the etiology and pathogenesis of Alzheimer's disease (AD). Compounds that reduce Abeta accumulation may therefore be useful therapeutically. In cell-based screens we detected a significant reduction in Abeta concentration after treatment with the phosphatidylinositol kinase inhibitors wortmannin and LY294002. To determine the effect of this class of compounds on in vivo Abeta accumulation, we administered wortmannin to the Tg2576 mouse model of AD. Oral administration of wortmannin over four months resulted in a significant, non-overlapping 40%-50% reduction in the number of senile plaques, one of the pathological hallmarks of AD. Sandwich ELISA analysis of formic acid extractable Abeta in the brain of treated animals indicates that both Abeta40 and the longer, more amyloidogenic form of the peptide, Abeta42, were significantly reduced. These data provide the first direct evidence that compounds identified by their ability to reduce Abeta concentration in vitro can reduce Abeta accumulation and deposition in the brain, thus establishing a basic paradigm for the identification and evaluation of additional compounds that lower Abeta accumulation.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Androstadienes/administration & dosage , Androstadienes/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Administration, Oral , Aging/physiology , Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Androstadienes/therapeutic use , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Mice , Mice, Transgenic , Models, Biological , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plaque, Amyloid/drug effects , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Solubility , Wortmannin
2.
Toxicon ; 37(2): 343-57, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10078864

ABSTRACT

The rare diarrhoeic shellfish poisoning (DSP) toxin, dinophysistoxin-2 (DTX-2), which is an okadaic acid (OA) isomer, has been isolated from a marine phytoplankton biomass that consisted mainly of Dinophysis acuta. Using a large double plankton net (length 5.9 m), bulk phytoplankton samples were collected off the south-west coast of Ireland and extracted with methanol and chloroform. Liquid chromatography coupled with ionspray mass spectrometry and tandem mass spectrometry (LC-MS, LC-MS-MS) showed the sample contained DTX-2 and OA, at a concentration of 80 pg/cell and 60 pg/cell, respectively. Flash chromatography using silica, sephadex LH20 and C18-silica, followed by preparative reversed-phase LC, separated DTX-2 from OA. The efficiency of the separation procedures was substantially improved by the use of a bioscreen to detect DSP toxins in eluate fractions and the application of a new derivatisation procedure for the chromatographic elucidation of toxin profiles with fluorimetric detection (LC-FLD). Thus, 1/1000th aliquots of eluate fractions were assayed using protein phosphatase-2A for the presence of inhibitory compounds. Positive fractions were further analysed for DSP toxins by LC-FLD following derivatisation using the hydrazine reagent, luminarine-3. The identity and purity of the free isolated DTX-2 was confirmed using flow injection analysis (FIA) and liquid chromatography (FIA-MS, LC-MS and LC-MS-MS).


Subject(s)
Marine Toxins/analysis , Okadaic Acid/analysis , Phytoplankton/chemistry , Pyrans/analysis , Animals , Diarrhea/chemically induced , Fluorometry , Gas Chromatography-Mass Spectrometry , Hydrazines/chemistry , Marine Toxins/isolation & purification , Okadaic Acid/analogs & derivatives , Phosphoprotein Phosphatases/chemistry , Protein Phosphatase 2 , Pyrans/isolation & purification , Shellfish , Stereoisomerism
3.
J Chromatogr A ; 798(1-2): 137-45, 1998 Mar 06.
Article in English | MEDLINE | ID: mdl-9542135

ABSTRACT

A new analogue of okadaic acid (OA), the toxin mainly responsible for diarrhetic shellfish-poisoning (DSP) phenomena in Europe, has been isolated from toxic phytoplankton (Dinophysis acuta) collected in Irish waters. Fluorimetric LC analyses of the extracts of bulk phytoplankton samples using derivatisation with 9-anthryldiazomethane (ADAM) showed a complex toxin profile, with peaks corresponding to OA and dinophysistoxin-2 (DTX-2) as well as a third unidentified compound. This minor unidentified component was isolated by chromatographic techniques such as normal-phase chromatography, gel permeation on Sephadex, solid-phase extraction and reversed-phase separations. Ionspray mass spectrometry (MS) was used for structural investigation on this compound due to the very small amount of isolated material. Flow injection analysis (FIA)-MS of the isolated compound gave positive-ion mass spectrum dominated by the protonated molecule, [M + H]+, at signal m/z 805, whereas the deprotonated molecule [M - H]- was observed in the negative-ion spectrum at signal m/z 803, thus indicating the molecular weight of 804 for the new toxin, the same as OA and its known isomers, DTX-2 and DTX-2B. Collision-induced dissociation (CID) as obtained by positive and negative tandem mass spectrometry (MS-MS) showed a fragmentation pattern for the new compound which was very similar to that of OA, DTX-2 and DTX-2B. Ionspray microLC-MS of a mixture containing the compound under investigation together with OA analogues showed the compound eluted after OA, DTX-2, DTX-2B and before DTX-1. All the chromatographic and mass spectrometric data indicated the compound to be another OA isomer and it was therefore coded DTX-2C. To the best of our knowledge this is the first report on the isolation of a new compound related to DSP toxins from natural communities of toxic phytoplankton.


Subject(s)
Diarrhea/chemically induced , Food Analysis , Foodborne Diseases , Marine Toxins/analysis , Okadaic Acid/analogs & derivatives , Phytoplankton/chemistry , Anthracenes/chemistry , Chromatography, High Pressure Liquid/methods , Fluorescent Dyes , Fluorometry , Mass Spectrometry , Okadaic Acid/analysis , Pyrans/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...