Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Appl Clin Med Phys ; 19(6): 79-87, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30199127

ABSTRACT

The combined effects of lung tumor motion and limitations of treatment planning system dose calculations in lung regions increases uncertainty in dose delivered to the tumor and surrounding normal tissues in lung stereotactic body radiotherapy (SBRT). This study investigated the effect on plan quality and accuracy when overriding treatment volume electron density values. The QUASAR phantom with modified cork cylindrical inserts, each containing a simulated spherical tumor of 15-mm, 22-mm, or 30-mm diameter, was used to simulate lung tumor motion. Using Monaco 5.1 treatment planning software, two standard plans (50% central phase (50%) and average intensity projection (AIP)) were compared to eight electron density overridden plans that focused on different target volumes (internal target volume (ITV), planning target volume (PTV), and a hybrid plan (HPTV)). The target volumes were set to a variety of electron densities between lung and water equivalence. Minimal differences were seen in the 30-mm tumor in terms of target coverage, plan conformity, and improved dosimetric accuracy. For the smaller tumors, a PTV override showed improved target coverage as well as better plan conformity compared to the baseline plans. The ITV plans showed the highest gamma pass rate agreement between treatment planning system (TPS) and measured dose (P < 0.040). However, the low electron density PTV and HPTV plans also showed improved gamma pass rates (P < 0.035, P < 0.011). Low-density PTV overrides improved the plan quality and accuracy for tumor diameters less than 22 mm only. Although an ITV override generated the most significant increase in accuracy, the low-density PTV plans had the additional benefit of plan quality improvement. Although this study and others agreed that density overrides improve the treatment of SBRT, the optimal density override and the conditions under which it should be applied were found to be department specific, due to variations in commissioning and calculation methods.


Subject(s)
Electrons , Imaging, Three-Dimensional/methods , Neoplasms/surgery , Phantoms, Imaging , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Humans , Organs at Risk/radiation effects , Radiometry/methods , Radiotherapy Dosage , Respiratory-Gated Imaging Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...