Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pediatr Blood Cancer ; 67(6): e28267, 2020 06.
Article in English | MEDLINE | ID: mdl-32307821

ABSTRACT

BACKGROUND: The treatment of high-risk neuroblastoma continues to present a formidable challenge to pediatric oncology. Previous studies have shown that Bromodomain and extraterminal (BET) inhibitors can inhibit MYCN expression and suppress MYCN-amplified neuroblastoma in vivo. Furthermore, alterations within RAS-MAPK (mitogen-activated protein kinase) signaling play significant roles in neuroblastoma initiation, maintenance, and relapse, and mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors demonstrate efficacy in subsets of neuroblastoma preclinical models. Finally, hyperactivation of RAS-MAPK signaling has been shown to promote resistance to BET inhibitors. Therefore, we examined the antitumor efficacy of combined BET/MEK inhibition utilizing I-BET726 or I-BET762 and trametinib in high-risk neuroblastoma. PROCEDURE: Utilizing a panel of genomically annotated neuroblastoma cell line models, we investigated the in vitro effects of combined BET/MEK inhibition on cell proliferation and apoptosis. Furthermore, we evaluated the effects of combined inhibition in neuroblastoma xenograft models. RESULTS: Combined BET and MEK inhibition demonstrated synergistic effects on the growth and survival of a large panel of neuroblastoma cell lines through augmentation of apoptosis. A combination therapy slowed tumor growth in a non-MYCN-amplified, NRAS-mutated neuroblastoma xenograft model, but had no efficacy in an MYCN-amplified model harboring a loss-of-function mutation in NF1. CONCLUSIONS: Combinatorial BET and MEK inhibition was synergistic in the vast majority of neuroblastoma cell lines in the in vitro setting but showed limited antitumor activity in vivo. Collectively, these data do not support clinical development of this combination in high-risk neuroblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Benzodiazepines/pharmacology , MAP Kinase Kinase 1/antagonists & inhibitors , Neuroblastoma/drug therapy , Proteins/antagonists & inhibitors , Pyridones/pharmacology , Pyrimidinones/pharmacology , Animals , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, SCID , Neuroblastoma/metabolism , Neuroblastoma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Org Lett ; 20(10): 2984-2987, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29737176

ABSTRACT

During optimization of the synthesis of the mixed µ opioid agonist/δ opioid antagonist 5-(hydroxymethyl)oxymorphone (UMB425) for scale-up, it was unexpectedly discovered that the 4,5-epoxy bridge underwent rearrangement on treatment with boron tribromide (BBr3) to yield a novel opioid with a little-studied pyranomorphinan skeleton. This finding opens the pyranomorphinans for further investigations of their pharmacological profiles and represents a novel drug class with the dual profile (µ vs δ) predicted to yield lower tolerance and dependence. The structure was assigned with the help of 1D, 2D NMR and the X-ray crystal structure.


Subject(s)
Analgesics, Opioid/chemistry , Drug Tolerance , Molecular Structure , Receptors, Opioid, delta , Receptors, Opioid, mu
3.
Bioorg Med Chem Lett ; 27(3): 666-669, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28011222

ABSTRACT

Opioid analgesic tolerance remains a considerable drawback to chronic pain management. The finding that concomitant administration of delta opioid receptor (DOR) antagonists attenuates the development of tolerance to mu opioid receptor (MOR) agonists has led to interest in producing bifunctional MOR agonist/DOR antagonist ligands. Herein, we present 7-benzylideneoxymorphone (6, UMB 246) displaying MOR partial agonist/DOR antagonist activity, representing a new lead for designing bifunctional MOR/DOR ligands.


Subject(s)
Analgesics/chemistry , Ligands , Oxymorphone/analogs & derivatives , Oxymorphone/chemistry , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism , Analgesics/chemical synthesis , Analgesics/therapeutic use , Animals , Benzylidene Compounds/chemistry , Mice , Oxymorphone/chemical synthesis , Oxymorphone/therapeutic use , Pain/drug therapy , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, mu/agonists
4.
Expert Rev Clin Pharmacol ; 8(3): 321-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25916666

ABSTRACT

Posaconazole, a broad-spectrum triazole antifungal agent, is approved for the prevention of invasive aspergillosis and candidiasis in addition to the treatment of oropharyngeal candidiasis. There is evidence of efficacy in the treatment and prevention of rarer, more difficult-to-treat fungal infections. Posaconazole oral suspension solution has shown limitations with respect to fasting state absorption, elevated gastrointestinal pH and increased motility. The newly approved delayed-release oral tablet and intravenous solution formulations provide an attractive treatment option by reducing interpatient variability and providing flexibility in critically ill patients. On the basis of clinical experience and further clinical studies, posaconazole was found to be a valuable pharmaceutical agent for the treatment of life-threatening fungal infections. This review will examine the development history of posaconazole and highlight the most recent advances.


Subject(s)
Antifungal Agents/therapeutic use , Mycoses/drug therapy , Triazoles/therapeutic use , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Aspergillosis/drug therapy , Aspergillosis/microbiology , Candidiasis/drug therapy , Candidiasis/microbiology , Chemistry, Pharmaceutical/methods , Critical Illness , Delayed-Action Preparations , Humans , Mycoses/microbiology , Triazoles/administration & dosage , Triazoles/pharmacology
5.
Am J Vet Res ; 75(7): 619-25, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24959727

ABSTRACT

OBJECTIVE: To evaluate analgesic effects of an improved sustained-release buprenorphine (BUP-SR) formulation administered to mice. ANIMALS: 36 male Swiss-Webster mice. PROCEDURES: Mice were assigned to each of 3 treatment groups (n = 12 mice/group). Treatments were administered SC (vehicle [control treatment], 1.5 mg of buprenorphine hydrochloride [BUP-HCl]/kg, and 1.5 mg of BUP-SR/kg). Mice were evaluated (total activity, gastrointestinal tract motility, respiratory rate, cataleptic behavior, and tall-flick and hot plate nociception tests) to determine behavioral and physiologic responses at 4, 24, and 48 hours after treatment administration. Body weight and respiratory rate were measured before and at each time point after treatment administration. RESULTS: SC administration of BUP-SR resulted in significant antinociception effects for 48 hours for the hot plate and tall-flick nociception tests without substantial adverse effects. Gastrointestinal tract motility and total activity were higher at 4 hours for mice receiving BUP-SR than for mice receiving the vehicle, but values were the same between these groups at 24 and 48 hours. The BUP-SR group had a lower respiratory rate than did the control group at all times after treatment administration. Mice treated with BUP-SR had no significant changes in body weight during the study, whereas mice treated with BUP-HCl had a significant decrease in body weight at 24 and 48 hours. CONCLUSIONS AND CLINICAL RELEVANCE: BUP-SR administration resulted in antinociception effects for 48 hours. Results of this study indicated that the improved BUP-SR formulation could be safely administered SC and conferred superior analgesia, compared with that for BUP-HCl, in mice.


Subject(s)
Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Buprenorphine/administration & dosage , Buprenorphine/pharmacology , Pain/prevention & control , Analgesics, Opioid/adverse effects , Animals , Buprenorphine/adverse effects , Delayed-Action Preparations , Male , Mice , Pain Measurement , Random Allocation
6.
PLoS One ; 9(2): e89985, 2014.
Article in English | MEDLINE | ID: mdl-24587167

ABSTRACT

Dextromethorphan is an antitussive with a high margin of safety that has been hypothesized to display rapid-acting antidepressant activity based on pharmacodynamic similarities to the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine. In addition to binding to NMDA receptors, dextromethorphan binds to sigma-1 (σ1) receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine whether dextromethorphan elicits antidepressant-like effects and the involvement of σ1 receptors in mediating its antidepressant-like actions. The antidepressant-like effects of dextromethorphan were assessed in male, Swiss Webster mice using the forced swim test. Next, σ1 receptor antagonists (BD1063 and BD1047) were evaluated in conjunction with dextromethorphan to determine the involvement of σ receptors in its antidepressant-like effects. Quinidine, a cytochrome P450 (CYP) 2D6 inhibitor, was also evaluated in conjunction with dextromethorphan to increase the bioavailability of dextromethorphan and reduce exposure to additional metabolites. Finally, saturation binding assays were performed to assess the manner in which dextromethorphan interacts at the σ1 receptor. Our results revealed dextromethorphan displays antidepressant-like effects in the forced swim test that can be attenuated by pretreatment with σ1 receptor antagonists, with BD1063 causing a shift to the right in the dextromethorphan dose response curve. Concomitant administration of quinidine potentiated the antidepressant-like effects of dextromethorphan. Saturation binding assays revealed that a Ki concentration of dextromethorphan reduces both the Kd and the Bmax of [(3)H](+)-pentazocine binding to σ1 receptors. Taken together, these data suggest that dextromethorphan exerts some of its antidepressant actions through σ1 receptors.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Dextromethorphan/pharmacology , Receptors, sigma/metabolism , Adrenergic alpha-Antagonists/pharmacology , Animals , Behavior, Animal/physiology , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Dose-Response Relationship, Drug , Ethylenediamines/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Kinetics , Male , Mice , Piperazines/pharmacology , Protein Binding , Quinidine/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, sigma/antagonists & inhibitors , Swimming/physiology , Sigma-1 Receptor
7.
Bioorg Med Chem Lett ; 23(24): 6920-6922, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24211020

ABSTRACT

Selective σ2 ligands continue to be an active target for medications to attenuate the effects of psychostimulants. In the course of our studies to determine the optimal substituents in the σ2-selective phenyl piperazines analogues with reduced activity at other neurotransmitter systems, we discovered that 1-(3-chlorophenyl)-4-phenethylpiperazine actually had preferentially increased affinity for dopamine transporters (DAT), yielding a highly selective DAT ligand.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/chemistry , Ligands , Piperazines/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Piperazines/metabolism , Protein Binding , Receptors, sigma/chemistry , Receptors, sigma/metabolism , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem ; 21(17): 4923-7, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23896610

ABSTRACT

A series of ring-constrained phenylpropyloxyethylamines, partial opioid structure analogs and derivatives of a previously studied sigma (σ) receptor ligand, was synthesized and evaluated at σ and opioid receptors for receptor selectivity. The results of this study identified several compounds with nanomolar affinity at both σ receptor subtypes. Compounds 6 and 9 had the highest selectivity for both σ receptor subtypes, compared to µ opioid receptors. In addition, compounds 6 and 9 significantly reduced the convulsive effects of cocaine in mice, which would be consistent with antagonism of σ receptors.


Subject(s)
Cyclohexanols/chemistry , Ethylamines/chemistry , Phenethylamines/chemistry , Propylamines/chemistry , Receptors, sigma/antagonists & inhibitors , Animals , Cocaine/chemistry , Cocaine/toxicity , Convulsants/chemistry , Convulsants/metabolism , Convulsants/therapeutic use , Cyclohexanols/metabolism , Cyclohexanols/therapeutic use , Ethylamines/metabolism , Ethylamines/therapeutic use , Mice , Phenethylamines/metabolism , Phenethylamines/therapeutic use , Propylamines/metabolism , Propylamines/therapeutic use , Protein Binding , Receptors, sigma/metabolism , Seizures/chemically induced , Seizures/drug therapy
9.
ACS Chem Neurosci ; 4(9): 1256-66, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-23713721

ABSTRACT

Opioid narcotics are used for the treatment of moderate-to-severe pain and primarily exert their analgesic effects through µ receptors. Although traditional µ agonists can cause undesired side effects, including tolerance, addition of δ antagonists can attenuate said side effects. Herein, we report 4a,9-dihydroxy-7a-(hydroxymethyl)-3-methyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one (UMB 425) a 5,14-bridged morphinan-based orvinol precursor synthesized from thebaine. Although UMB 425 lacks δ-specific motifs, conformationally sampled pharmacophore models for µ and δ receptors predict it to have efficacy similar to morphine at µ receptors and similar to naltrexone at δ receptors, due to the compound sampling conformations in which the hydroxyl moiety interacts with the receptors similar to orvinols. As predicted, UMB 425 exhibits a mixed µ agonist/δ antagonist profile as determined in receptor binding and [(35)S]GTPγS functional assays in CHO cells. In vivo studies in mice show that UMB 425 displays potent antinociception in the hot plate and tail-flick assays. The antinociceptive effects of UMB 425 are blocked by naloxone, but not by the κ-selective antagonist norbinaltorphimine. During a 6-day tolerance paradigm, UMB 425 maintains significantly greater antinociception compared to morphine. These studies thus indicate that, even in the absence of δ-specific motifs fused to the C-ring, UMB 425 has mixed µ agonist/δ antagonist properties in vitro that translate to reduced tolerance liabilities in vivo.


Subject(s)
Analgesics, Opioid/chemical synthesis , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, mu/agonists , Thebaine/analogs & derivatives , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Analgesics, Opioid/toxicity , Animals , CHO Cells , Computer Simulation , Cricetulus , Drug Evaluation, Preclinical , Drug Tolerance , Humans , Male , Mice , Models, Chemical , Molecular Structure , Morphine/pharmacology , Naloxone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/chemical synthesis , Narcotic Antagonists/chemistry , Narcotic Antagonists/pharmacology , Narcotic Antagonists/toxicity , Nociceptive Pain/drug therapy , Pain Measurement , Protein Binding , Receptors, Opioid, delta/genetics , Receptors, Opioid, kappa/drug effects , Receptors, Opioid, kappa/genetics , Receptors, Opioid, mu/genetics , Structure-Activity Relationship , Thebaine/chemical synthesis , Thebaine/chemistry , Thebaine/pharmacology , Thebaine/toxicity , Transfection
10.
Bioorg Med Chem ; 20(14): 4556-63, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22677527

ABSTRACT

A series of phenylpropyloxyethylamines and cinnamyloxyethylamines were synthesized as deconstructed analogs of 14-phenylpropyloxymetopon and analyzed for opioid receptor binding affinity. Using the Conformationally Sampled Pharmacophore modeling approach, we discovered a series of compounds lacking a tyrosine mimetic, historically considered essential for µ opioid binding. Based on the binding studies, we have identified the optimal analogs to be N-methyl-N-phenylpropyl-2-(3-phenylpropoxy)ethanamine, with 1520 nM, and 2-(cinnamyloxy)-N-methyl-N-phenethylethanamine with 1680 nM affinity for the µ opioid receptor. These partial opioid structure analogs will serve as the novel lead compounds for future optimization studies.


Subject(s)
Ethylamines/chemistry , Morpholines/chemistry , Receptors, Opioid, mu/metabolism , Ethylamines/chemical synthesis , Models, Molecular , Protein Binding , Receptors, Opioid, mu/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...