Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805656

ABSTRACT

The negative effects of Varroa and pesticides on colony health and survival are among the most important concerns to beekeepers. To compare the relative contribution of Varroa, pesticides, and interactions between them on honey bee colony performance and survival, a 2-year longitudinal study was performed in corn and soybean growing areas of Iowa. Varroa infestation and pesticide content in stored pollen were measured from 3 apiaries across a gradient of corn and soybean production areas and compared to measurements of colony health and survival. Colonies were not treated for Varroa the first year, but were treated the second year, leading to reduced Varroa infestation that was associated with larger honey bee populations, increased honey production, and higher colony survival. Pesticide detections were highest in areas with high-intensity corn and soybean production treated with conventional methods. Pesticide detections were positively associated with honey bee population size in May 2015 in the intermediate conventional (IC) and intermediate organic (IO) apiaries. Varroa populations across all apiaries in October 2015 were negatively correlated with miticide and chlorpyrifos detections. Miticide detections across all apiaries and neonicotinoid detections in the IC apiary in May 2015 were higher in colonies that survived. In July 2015, colony survival was positively associated with total pesticide detections in all apiaries and chlorpyrifos exposure in the IC and high conventional (HC) apiaries. This research suggests that Varroa are a major cause of reduced colony performance and increased colony losses, and honey bees are resilient upon low to moderate pesticide detections.


Subject(s)
Glycine max , Varroidae , Zea mays , Animals , Bees/parasitology , Bees/drug effects , Iowa , Varroidae/physiology , Beekeeping , Pesticides/toxicity , Longitudinal Studies , Pollen
2.
J Am Mosq Control Assoc ; 39(4): 243-250, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38108429

ABSTRACT

Mosquitoes are a known public nuisance and can vector various diseases. Historically, New Orleans, LA, has long been acquainted with the burden of mosquito-borne diseases, such as malaria and yellow fever in the 20th century and West Nile virus in the 21st century. Government mosquito control awareness campaigns have been around for decades as has the use of organophosphate and pyrethroid insecticides by mosquito abatement districts. However, few data are available on public perception of mosquito control and public usage of insecticides to kill mosquitoes in New Orleans. We conducted a survey from August 2020 to July 2021 to evaluate New Orleans residents' 1) general knowledge regarding mosquito control and 2) what measures and products they use to control mosquitoes. The aim of this survey was to determine how residents contribute to backyard mosquito control by do-it-yourself or professional applications of insecticides. The survey was disseminated both online and via mail. Of the 396 survey participants, nearly all (99.48%) agreed that mosquito control is important in New Orleans because it prevents mosquito bites (30.85%), prevents mosquito borne-diseases (38.51%), and prevents nuisance mosquitoes (29.17%). More than one-third (35%) of survey participants indicated that they empty containers to reduce adult mosquitoes on their own property. More than two-thirds of the participants (69.95%) would not hire a pest management professional to spray their yard for adult mosquitoes, and only 20% of survey participants do apply a pesticide to kill adult mosquitoes on their own property. None of our findings were associated with the level of education, gender, or age of participants. This study suggests that the City of New Orleans Mosquito, Termite and Rodent Control Board educational and outreach campaigns may be an effective tool in spreading mosquito control awareness and contribute to residents' knowledge of mosquito control. The data we collected indicate that residents understand what mosquito control is and why it is important in New Orleans.


Subject(s)
Insecticides , Mosquito-Borne Diseases , Adult , Animals , Humans , New Orleans , Mosquito Control , Knowledge
3.
J Am Mosq Control Assoc ; 36(4)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37866823

ABSTRACT

Mosquitoes are a known public nuisance and can vector various diseases. Historically, New Orleans, LA, has long been acquainted with the burden of mosquito-borne diseases, such as malaria and yellow fever in the 20th century and West Nile virus in the 21st century. Government mosquito control awareness campaigns have been around for decades as has the use of organophosphate and pyrethroid insecticides by mosquito abatement districts. However, few data are available on public perception of mosquito control and public usage of insecticides to kill mosquitoes in New Orleans. We conducted a survey from August 2020 to July 2021 to evaluate New Orleans residents' 1) general knowledge regarding mosquito control and 2) what measures and products they use to control mosquitoes. The aim of this survey was to determine how residents contribute to backyard mosquito control by do-it-yourself or professional applications of insecticides. The survey was disseminated both online and via mail. Of the 396 survey participants, nearly all (99.48%) agreed that mosquito control is important in New Orleans because it prevents mosquito bites (30.85%), prevents mosquito borne-diseases (38.51%), and prevents nuisance mosquitoes (29.17%). More than one-third (35%) of survey participants indicated that they empty containers to reduce adult mosquitoes on their own property. More than two-thirds of the participants (69.95%) would not hire a pest management professional to spray their yard for adult mosquitoes, and only 20% of survey participants do apply a pesticide to kill adult mosquitoes on their own property. None of our findings were associated with the level of education, gender, or age of participants. This study suggests that the City of New Orleans Mosquito, Termite and Rodent Control Board educational and outreach campaigns may be an effective tool in spreading mosquito control awareness and contribute to residents' knowledge of mosquito control. The data we collected indicate that residents understand what mosquito control is and why it is important in New Orleans.


Subject(s)
Insecticides , Pyrethrins , Adult , Animals , Humans , Mosquito Control , New Orleans , Surveys and Questionnaires
4.
J Med Entomol ; 60(4): 637-643, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37058437

ABSTRACT

Thermal tolerance greatly influences the geographic distribution, seasonality, and feeding habits of mosquitoes; this study aimed to examine the impacts of species, sex, and diet on thermal tolerance in mosquitoes. We found that Culex quinquefasciatus was inherently significantly more cold tolerant than Aedes aegypti, while Ae. aegypti had improved heat tolerance compared to Cx. quinquefasciatus. There were no differences in thermal tolerance between sexes within either species. We observed similar levels of cold tolerance between all diets tested, but observed decreased heat tolerance in mannitol-fed mosquitoes. Our results suggest that although dietary factors such as sugar alcohols and sugars may play a role in thermal tolerance in mosquitoes, there are likely physiological and genetic factors that can have a greater influence on the limits of thermal tolerance within a species.


Subject(s)
Aedes , Culex , Animals , Diet
5.
Sci Rep ; 12(1): 13763, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35962013

ABSTRACT

Insecticide application for vector control is the most controversial component of a public health program due to concerns about environmental and human health safety. One approach to overcome this challenge is the use of environmentally benign active ingredients. Among the most promising emerging strategies are attractive toxic sugar baits. Sugar alcohols-naturally occurring molecules safe for human consumption but potentially toxic to insects when ingested, have received increased attention for use with this approach. For this study, we screened the toxicity of four different sugar alcohols on several mosquito species, a biting midge, and a filth fly. Sugar alcohol mortalities exceeded those in the sucrose (positive control) only group. However, only erythritol and highly concentrated xylitol induced mortalities exceeding those in the water only (negative control) treatment ranging from approximately 40-75%. Formulations containing erythritol and xylitol should be further investigated under field conditions for efficacy in reducing populations of biting flies and for assessing potential non-target impacts.


Subject(s)
Culicidae , Sugar Alcohols , Animals , Erythritol/pharmacology , Humans , Mosquito Control , Mosquito Vectors , Xylitol
6.
Front Genet ; 13: 909392, 2022.
Article in English | MEDLINE | ID: mdl-35719388

ABSTRACT

Honey bees exposed to Varroa mites incur substantial physical damage in addition to potential exposure to vectored viruses such as Deformed wing virus (DWV) that exists as three master variants (DWV-A, DWV-B, and DWV-C) and recombinants. Although mite-resistant bees have been primarily bred to mitigate the impacts of Varroa mites, mite resistance may be associated with increased tolerance or resistance to the vectored viruses. The goal of our study is to determine if five honey bee stocks (Carniolan, Italian, Pol-Line, Russian, and Saskatraz) differ in their resistance or tolerance to DWV based on prior breeding for mite resistance. We injected white-eyed pupae with a sublethal dose (105) of DWV or exposed them to mites and then evaluated DWV levels and dissemination and morphological symptoms upon adult emergence. While we found no evidence of DWV resistance across stocks (i.e., similar rates of viral replication and dissemination), we observed that some stocks exhibited reduced symptom severity suggestive of differential tolerance. However, DWV tolerance was not consistent across mite-resistant stocks as Russian bees were most tolerant, while Pol-Line exhibited the most severe symptoms. DWV variants A and B exhibited differential dissemination patterns that interacted significantly with the treatment group but not bee stock. Furthermore, elevated DWV-B levels reduced adult emergence time, while both DWV variants were associated with symptom likelihood and severity. These data indicate that the genetic differences underlying bee resistance to Varroa mites are not necessarily correlated with DWV tolerance and may interact differentially with DWV variants, highlighting the need for further work on mechanisms of tolerance and bee stock-specific physiological interactions with pathogen variants.

7.
Sci Rep ; 12(1): 4852, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393440

ABSTRACT

The ectoparasite Varroa destructor is the greatest threat to managed honey bee (Apis mellifera) colonies globally. Despite significant efforts, novel treatments to control the mite and its vectored pathogens have shown limited efficacy, as the host remains naïve. A prospective solution lies in the development of Varroa-resistant honey bee stocks, but a paucity of rigorous selection data restricts widespread adoption. Here, we characterise the parasite and viral dynamics of a Varroa-resistant honey bee stock, designated 'Pol-line', using a large-scale longitudinal study. Results demonstrate markedly reduced Varroa levels in this stock, diminished titres of three major viruses (DWV-A, DWV-B, and CBPV), and a two-fold increase in survival. Levels of a fourth virus that is not associated with Varroa-BQCV-do not differ between stocks, supporting a disruption of the transmission pathway. Further, we show that when decoupled from the influence of Varroa levels, viral titres do not constitute strong independent predictors of colony mortality risk. These findings highlight the need for a reassessment of Varroa etiology, and suggest that derived stocks represent a tractable solution to the Varroa pandemic.


Subject(s)
Varroidae , Animals , Bees , Longitudinal Studies , Prospective Studies
8.
J Insect Sci ; 22(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35137131

ABSTRACT

Transgenerational immune priming is the process of increased resistance to infection in offspring due to parental pathogen exposure. Honey bees (Apis mellifera L. (Hymenoptera: Apidae)) are hosts to multiple pathogens, and this complex immune function could help protect against overwhelming infection. Honey bees have demonstrated transgenerational immune priming for the bacterial pathogen Paenibacillus larvae; however, evidence for viral transgenerational immune priming is lacking across insects in general. Here we test for the presence of transgenerational immune priming in honey bees with Deformed wing virus (DWV) by injecting pupae from DWV-exposed queens and measuring virus titer and immune gene expression. Our data suggest that there is evidence for viral transgenerational immune priming in honey bees, but it is highly context-dependent based on route of maternal exposure and potentially host genetics or epigenetic factors.


Subject(s)
Bees , Insect Viruses , RNA Viruses , Animals , Bees/immunology , Bees/virology , Female , Maternal Exposure , Pupa , Viral Load
9.
J Med Entomol ; 59(2): 779-783, 2022 03 16.
Article in English | MEDLINE | ID: mdl-34927201

ABSTRACT

Multiple oviposition attractants are used for Culex (Diptera: Culicidae) mosquito surveillance in the CDC Gravid Trap, including hay and fish emulsion-infused water. Despite the use of both in the United States, no research has compared their attractiveness. We conducted trapping throughout Louisiana to assess the attractiveness of hay and fish emulsion-infused water in various habitat types and climates. Our results indicate that fish emulsion-infused water attracts more mosquitoes overall, more Culex quinquefasciatus (Say, 1823), and a wider diversity of mosquitoes than hay-infused water. This trend was maintained, regardless of habitat type or climate.


Subject(s)
Culex , Culicidae , Animals , Centers for Disease Control and Prevention, U.S. , Emulsions , Female , Mosquito Control/methods , Oviposition , United States , Water
10.
J Med Entomol ; 58(3): 1322-1330, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33378451

ABSTRACT

West Nile virus (WNV) is the most prevalent arbovirus found throughout the United States. Surveillance of surface breeding Culex vectors involved in WNV transmission is primarily conducted using CDC Gravid traps. However, anecdotal claims from mosquito abatement districts in Louisiana assert that other trap types may be more suited to WNV surveillance. To test the validity of these assertions, we conducted a series of trapping trials and WNV surveillance over 3 yr to compare the efficacy of multiple trap types. First, we compared the CDC Gravid trap, CO2-baited New Standard Miniature Blacklight traps, and CO2-baited CDC light traps with either an incandescent light, a red light, or no light. We found that the CDC Gravid trap and CO2-baited no-light CDC Light trap collected the most mosquitoes. Second, we conducted additional, long-term trapping and WNV surveillance to compare these two trap types. We found that CO2-baited no-light CDC traps collected more of the local WNV vector, Culex quinquefasciatus (Say, Diptera, Culicidae), and detected WNV with greater sensitivity. Finally, we conducted trapping to compare the physiological states of Cx. quinquefasciatus and diversity of collected mosquitoes. CO2-baited no-light CDC light traps collected more unfed Cx. quinquefasciatus while Gravid traps collected more blooded Cx. quinquefasciatus; both traps collected the same number of gravid Cx. quinquefasciatus. Additionally, we found that CO2-baited no-light CDC light traps collected a larger diversity of mosquito species than Gravid traps.


Subject(s)
Culicidae , Mosquito Control , Mosquito Vectors , Animals , Centers for Disease Control and Prevention, U.S. , Female , Louisiana , Mosquito Control/methods , United States , West Nile virus
11.
Front Insect Sci ; 1: 756690, 2021.
Article in English | MEDLINE | ID: mdl-38468897

ABSTRACT

Varroa mite-vectored viruses such as Deformed wing virus (DWV) are of great concern for honey bee health as they can cause disease in individuals and increase colony mortality. Two genotypes of DWV (A and B) are prevalent in the United States and may have differential virulence and pathogenicity. Honey bee genetic stocks bred to resist Varroa mites also exhibit differential infection responses to the Varroa mite-vectored viruses. The goal of this project was to determine if interactions between host genotype could influence the overall infection levels and dissemination of DWV within honey bees. To do this, we injected DWV isolated from symptomatic adult bees into mite-free, newly emerged adult bees from five genetic stocks with varying levels of resistance to Varroa mites. We measured DWV-A and DWV-B dissemination among tissues chosen based on relevance to general health outcomes for 10 days. Injury from sham injections did not increase DWV-A levels but did increase DWV-B infections. DWV injection increased both DWV-A and DWV-B levels over time with significant host stock interactions. While we did not observe any differences in viral dissemination among host stocks, we found differences in virus genotype dissemination to different body parts. DWV-A exhibited the highest initial levels in heads and legs while the highest initial levels of DWV-B were found in heads and abdomens. These interactions underscore the need to evaluate viral genotype and tissue specificity in conjunction with host genotype, particularly when the host has been selected for traits relative to virus-vector and virus resistance.

12.
J Med Entomol ; 56(6): 1475-1490, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31549725

ABSTRACT

In North America, the geographic distribution, ecology, and vectorial capacity of a diverse assemblage of mosquito species belonging to the genus Culex determine patterns of West Nile virus transmission and disease risk. East of the Mississippi River, mostly ornithophagic Culex pipiens L. complex mosquitoes drive intense enzootic transmission with relatively small numbers of human cases. Westward, the presence of highly competent Culex tarsalis (Coquillett) under arid climate and hot summers defines the regions with the highest human risk. West Nile virus human risk distribution is not uniform geographically or temporally within all regions. Notable geographic 'hotspots' persist with occasional severe outbreaks. Despite two decades of comprehensive research, several questions remain unresolved, such as the role of non-Culex bridge vectors, which are not involved in the enzootic cycle, but may be involved in virus transmission to humans. The absence of bridge vectors also may help to explain the frequent lack of West Nile virus 'spillover' into human populations despite very intense enzootic amplification in the eastern United States. This article examines vectorial capacity and the eco-epidemiology of West Nile virus mosquito vectors in four geographic regions of North America and presents some of the unresolved questions.


Subject(s)
Culex/virology , Mosquito Vectors/virology , West Nile Fever/transmission , West Nile virus/physiology , Animals , North America
13.
Insects ; 10(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626046

ABSTRACT

Neonicotinoid insecticides have come under scrutiny for their potential role in honey bee declines. Additionally, reduced access to forage in agricultural areas creates the potential for risk interactions with these pesticides in regions critical for honey production. In this study, we sought to determine whether sufficient access to pollen during larval development could mitigate stress associated with oral clothianidin exposure in honey bee adults. An apiary was established where pollen traps deprived half of the colonies of pollen, which was then supplemented to the others. Adults were fed 0, 10, 40, 200, or 400 µg/L clothianidin in the laboratory, and larval and adult lipids and superoxide dismutase (SOD) activities were compared between feeding treatments. Survival at sublethal concentrations of clothianidin was significantly reduced for adult bees reared in pollen deprived colonies. Adult SOD activity was affected by clothianidin dose but not larval feeding treatment, though within the pollen-deprived cohort, SOD was greater in controls than those fed clothianidin. Larval SOD differed between field replicates, with supplemented colonies having slightly higher activity levels during a period of pollen dearth, indicating that supplementation during these periods is particularly important for mitigating oxidative stress within the hive. Larval lipids were significantly higher in supplemented colonies during a substantial pollen flow, though adult lipids were unaffected by feeding treatment. These results suggest that during periods of pollen dearth, oxidative stress and adult worker longevity will be improved by supplementing colonies with locally collected pollen.

14.
J Am Mosq Control Assoc ; 35(4): 249-257, 2019 12.
Article in English | MEDLINE | ID: mdl-31922937

ABSTRACT

Aedes albopictus, the Asian tiger mosquito, is an important nuisance mosquito species and known vector of arboviruses such as dengue, chikungunya, and Zika. Despite their cosmopolitan distribution around the world, there is a paucity of accurate predictive models based on rates of development at different temperatures (degree-day models). These types of models can benefit mosquito control districts by predicting when to target early-season larval development, when populations are likely at their lowest levels. In this study, we determined the effect of temperature and nutrient levels on the development rates and male and female adult size of 2 Ae. albopictus populations: one field-collected, the other a 20-year-old lab colony. We found relatively small differences in the effects of temperature and nutrient levels between populations. Data from these studies were used to create a predictive degree-day model, which when tested in New Jersey correlated with field observations of early-season field populations of Ae. albopictus. While other important factors, such as day length and fluctuating temperatures, should be evaluated, data from this study will contribute to the development of operational strategies to effectively time early-season larviciding against this species.


Subject(s)
Aedes/growth & development , Mosquito Control , Mosquito Vectors/growth & development , Ovum/physiology , Animals , Models, Biological , New Jersey , Seasons
15.
PLoS Negl Trop Dis ; 12(4): e0006259, 2018 04.
Article in English | MEDLINE | ID: mdl-29641515

ABSTRACT

BACKGROUND: The reduced efficacy of current Anopheline mosquito control methods underscores the need to develop new methods of control that exploit unique target sites and/or utilizes novel deployment methods. Autodissemination methodologies using insect growth regulators (IGRs) is growing in interest and has been shown to be effective at controlling Aedes mosquitoes in semi-field and field environments, yet little information exists for Anopheline mosquitoes. Therefore, we tested the hypothesis that female-driven autodissemination of an IGR combined with a new mechanism of action insecticide (Kir channel inhibitor) could be employed to reduce Anopheline populations. METHODOLOGY: We studied the ability of three IGRs to be transferred to the larval habitat during oviposition in laboratory and semi-field environments. Adult mosquitoes were exposed to the chemicals for 4 hours immediately after blood feeding and efficacy was tested using classical methodologies, including adult emergence inhibition and High Performance Liquid Chromatography (HPLC). A complete autodissemination design was tested in a semi-field environment. PRINCIPAL FINDINGS: Larval survivability and adult emergence were significantly reduced in habitats that were visited by novaluron treated adults, but no statistical differences were observed with pyriproxyfen or triflumuron. These data suggested novaluron, but not pyriproxyfen or triflumuron, was horizontally transferred from the adult mosquito to the larval habitat during oviposition. HPLC studies supported the toxicity data and showed that novaluron was present in the majority of larval habitats, suggesting that novaluron can be horizontally transferred by Anopheles quadrimaculatus. Importantly, the combination of novaluron and the Kir channel inhibitor, VU041, was capable of reducing adult and larval populations in semi-field environments. CONCLUSIONS: Novaluron can be transferred to the adult at a greater efficacy and/or is not degraded as quickly during the gonotropic cycle when compared to pyriproxyfen or triflumuron. Pending field confirmation, autodissemination approaches with novaluron may be a suitable tool to manage Anopheles populations.


Subject(s)
Anopheles , Insecticides , Juvenile Hormones , Mosquito Control/methods , Phenylurea Compounds , Animals , Ecosystem , Female , Larva , Oviposition , Regression Analysis
16.
J Med Entomol ; 55(4): 817-824, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29548036

ABSTRACT

The goal of this study was to evaluate the use of stable isotope labeled compounds to better understand factors influencing energy turnover in larval Culex quinquefasciatus (Say; Diptera: Culicidae). Three isotope labeled compounds were evaluated in this study, including 15N-labeled potassium nitrate, 13C-labeled glucose, and 13C-labeled leucine. Conditions were first optimized in the laboratory to determine the most appropriate concentration of isotope, as well as the half-life of enrichment. Once optimum conditions were established we used standard equations to predict and determine temperature and density-dependent energy turnover rates. Our results showed that higher concentrations of isotope had an impact on mosquito survivability, overall enrichment, and adult wing length. We predicted the half-life of to be around 0.614 to 0.971 d, and our observed half-lives were determined to be 0.72 to 1.44 d depending on temperature, larval density, and isotope compound. Both density and temperature had a strong influence on isotopic turnover rates in all isotopes evaluated. Our results suggest that stable isotopes can provide a useful tool in understanding how different stress factors influence energy turnover in larval Cx. quinquefasciatus. These data can also help lay a foundation on ways to improve larvicide efficacy under different biotic and abiotic conditions.


Subject(s)
Culex/metabolism , Energy Metabolism , Entomology/methods , Glucose/metabolism , Leucine/metabolism , Nitrates/metabolism , Potassium Compounds/metabolism , Animals , Carbon Isotopes/metabolism , Culex/growth & development , Larva/growth & development , Larva/metabolism , Nitrogen Isotopes/metabolism
17.
PLoS One ; 13(3): e0193535, 2018.
Article in English | MEDLINE | ID: mdl-29494661

ABSTRACT

Few studies have examined the impact of mosquito adulticides on honey bees under conditions that reflect actual field exposure. Whereas several studies have evaluated the toxicity of mosquito control products on honey bees, most have been laboratory based and have focused solely on acute mortality as a measure of impact. The goal of this study was to determine effects of routine applications of truck-based ultra-low volume (ULV) mosquito adulticides (i.e., Scourge, Duet, and Deltagard) on honey bees in a suburban setting. The mosquito adulticides used in this study were pyrethroids with active ingredients resmethrin (Scourge), prallethrin and sumithrin (Duet), and deltamethrin (Deltagard), in which resmethrin, prallethrin, and sumithrin were synergized with piperonyl butoxide. We measured and compared mortality and detoxification enzyme activities (esterase and glutathione S-transferase) from sentinel beehives within and outside of mosquito control areas. Concurrently, colony health (i.e., number of adult bees, brood quantity and brood quality) was compared throughout the study period. No significant differences were observed in honey bee mortality, colony health or detoxification enzyme activities between treated (five sprayed areas each received one to three insecticide treatment) and control sites (four unsprayed areas that did not receive insecticide treatment) over the seven week study period. However, our laboratory study showed that exposure to resmethrin, the active ingredient in Scourge, caused significant inhibition of esterase activity compared with the control group. Our findings suggest that proper application of truck based insecticides for mosquito control results in little or no exposure and therefore minimal effects on domestic honey bees.


Subject(s)
Bees/drug effects , Insecticides/toxicity , Mosquito Control/instrumentation , Pyrethrins/toxicity , Animals , Bees/enzymology , Bees/growth & development , Esterases/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Glutathione Transferase/metabolism , Inactivation, Metabolic , Insect Proteins/metabolism , Motor Vehicles , Nitriles/toxicity
18.
Insects ; 8(1)2017 Jan 11.
Article in English | MEDLINE | ID: mdl-28085045

ABSTRACT

Since Varroa mites may cause devastating losses of honey bees through direct feeding, transmitting diseases, and increasing pathogen susceptibility, chemical and mechanical practices commonly are used to reduce mite infestation. While miticide applications are typically the most consistent and efficacious Varroa mite management method, miticide-induced insecticide synergism in honey bees, and the evolution of resistance in Varroa mites are reasonable concerns. We treated colonies with the miticide amitraz (Apivar®), used IPM practices, or left some colonies untreated, and then measured the effect of different levels of mite infestations on the sensitivity of bees to phenothrin, amitraz, and clothianidin. Sensitivity to all insecticides varied throughout the year among and within treatment groups. Clothianidin sensitivity decreased with increasing mite levels, but no such correlation was seen with phenothrin or amitraz. These results show that insecticide sensitivity is dynamic throughout the 5 months test. In-hive amitraz treatment according to the labeled use did not synergize sensitivity to the pesticides tested and this should alleviate concern over potential synergistic effects. Since IPM practices were largely ineffective at reducing Varroa mite infestation, reliance on chemical methods of Varroa mite management is likely to continue. However, miticides must be used judiciously so the long term effectiveness of these compounds can be maximized. These data demonstrate the complex and dynamic variables that contribute to honey bee colony health. The results underscore the importance of controlling for as many of these variables as possible in order to accurately determine the effects of each of these factors as they act alone or in concert with others.

19.
PeerJ ; 4: e2155, 2016.
Article in English | MEDLINE | ID: mdl-27413635

ABSTRACT

Background. The age of an insect strongly influences many aspects of behavior and reproduction. The interaction of age and behavior is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of a set of individual honey bees would be an important measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees. Methods. We established single-cohort colonies to obtain age-matched nurse and forager bees. Bees of known ages were also sampled from colonies with normal demographics. Nurses and foragers were collected every 3-5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods. Results. Our analysis showed that pteridine levels significantly increased with age in a linear manner in both single cohort colonies and colonies with normal demography. Pteridine levels were higher in foragers than nurses of the same age in bees from single cohort colonies. Head weight significantly increased with age until approximately 28-days of age and then declined for both nurse and forager bees in single cohort colonies. A similar pattern of head weight in bees from colonies with normal demography was observed but head weight was highest in 8-day old nurse bees and there was no relationship of head weight with age of foragers. Discussion. Although the relationship between pteridine levels and age was significant, variation in the data yielded a +4-day range in age estimation. This allows an unambiguous method to determine whether a bee may be a young nurse or old forager in colonies with altered demographics as in the case of single cohort colonies. Pteridine levels in bees do not correlate with age as well as in other insects. However, most studies used insects reared under tightly controlled laboratory conditions, while we used free-living bees. The dynamics of head weight change with age is likely to be due to growth and atrophy of the hypopharyngeal glands. Taken together, these methods represent a useful tool for assessing the age of an insect. Future studies utilizing these methods will provide a more holistic view of colony health.

20.
PLoS One ; 10(10): e0139841, 2015.
Article in English | MEDLINE | ID: mdl-26431171

ABSTRACT

The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (<1-fold), moderate differences in pyrethroid bioassays (1.5 to 3-fold), and dramatic differences in neonicotinoid bioassays (3.4 to 33.3-fold). Synergism bioassays with piperonyl butoxide, amitraz, and coumaphos showed increased phenothrin sensitivity in all stocks and also demonstrated further physiological differences between stocks. In addition, as bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature.


Subject(s)
Bees/genetics , Insecticides , Aging , Animals , Biological Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...