Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 68(2): 561-70, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18199553

ABSTRACT

The alpha(v)beta(6) integrin is up-regulated on epithelial malignancies and has been implicated in various aspects of cancer progression. Immunohistochemical analysis of alpha(v)beta(6) expression in 10 human tumor types showed increased expression relative to normal tissues. Squamous carcinomas of the cervix, skin, esophagus, and head and neck exhibited the highest frequency of expression, with positive immunostaining in 92% (n = 46), 84% (n = 49), 68% (n = 56), and 64% (n = 100) of cases, respectively. We studied the role of alpha(v)beta(6) in Detroit 562 human pharyngeal carcinoma cells in vitro and in vivo. Prominent alpha(v)beta(6) expression was detected on tumor xenografts at the tumor-stroma interface resembling the expression on human head and neck carcinomas. Nonetheless, coculturing cells in vitro with matrix proteins did not up-regulate alpha(v)beta(6) expression. Detroit 562 cells showed alpha(v)beta(6)-dependent adhesion and activation of transforming growth factor-beta (TGF-beta) that was inhibited >90% with an alpha(v)beta(6) blocking antibody, 6.3G9. Although both recombinant soluble TGF-beta receptor type-II (rsTGF-beta RII-Fc) and 6.3G9 inhibited TGF-beta-mediated Smad2/3 phosphorylation in vitro, there was no effect on proliferation. Conversely, in vivo, 6.3G9 and rsTGF-beta RII-Fc inhibited xenograft tumor growth by 50% (n = 10, P < 0.05) and >90% (n = 10, P < 0.001), respectively, suggesting a role for the microenvironment in this response. However, stromal collagen and smooth muscle actin content in xenograft sections were unchanged with treatments. Although further studies are required to consolidate in vitro and in vivo results and define the mechanisms of tumor inhibition by alpha(v)beta(6) antibodies, our findings support a role for alpha(v)beta(6) in human cancer and underscore the therapeutic potential of function blocking alpha(v)beta(6) antibodies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carcinoma, Squamous Cell/pathology , Cell Proliferation/drug effects , Integrin alpha5/immunology , Pharyngeal Neoplasms/pathology , Transforming Growth Factor beta/physiology , Animals , Carcinoma, Squamous Cell/metabolism , Cells, Cultured , Disease Progression , Female , Humans , Immunoglobulin Fc Fragments/pharmacology , Integrin alpha5/metabolism , Integrin alpha5/physiology , Mice , Mice, Nude , Mink , Pharyngeal Neoplasms/metabolism , Protein Isoforms/immunology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/pharmacology , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/chemistry , Recombinant Fusion Proteins/pharmacology , Signal Transduction/genetics , Smad Proteins/metabolism , Xenograft Model Antitumor Assays
2.
Cancer Res ; 66(19): 9617-24, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-17018619

ABSTRACT

The lymphotoxin-beta receptor (LT beta R) is a tumor necrosis factor receptor family member critical for the development and maintenance of various lymphoid microenvironments. Herein, we show that agonistic anti-LT beta R monoclonal antibody (mAb) CBE11 inhibited tumor growth in xenograft models and potentiated tumor responses to chemotherapeutic agents. In a syngeneic colon carcinoma tumor model, treatment of the tumor-bearing mice with an agonistic antibody against murine LT beta R caused increased lymphocyte infiltration and necrosis of the tumor. A pattern of differential gene expression predictive of cellular and xenograft response to LT beta R activation was identified in a panel of colon carcinoma cell lines and when applied to a panel of clinical colorectal tumor samples indicated 35% likelihood a tumor response to CBE11. Consistent with this estimate, CBE11 decreased tumor size and/or improved long-term animal survival with two of six independent orthotopic xenografts prepared from surgical colorectal carcinoma samples. Targeting of LT beta R with agonistic mAbs offers a novel approach to the treatment of colorectal and potentially other types of cancers.


Subject(s)
Adenocarcinoma/therapy , Antibodies, Monoclonal/therapeutic use , Colonic Neoplasms/therapy , Lymphotoxin beta Receptor/agonists , Uterine Cervical Neoplasms/therapy , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Combined Modality Therapy , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Immunoglobulin M/immunology , Immunoglobulin M/therapeutic use , Irinotecan , Lymphocytes, Tumor-Infiltrating/immunology , Lymphotoxin beta Receptor/immunology , Mice , Mice, Inbred BALB C , Mice, Nude , Random Allocation , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , Single-Blind Method , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...