Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Transfusion ; 63(7): 1366-1375, 2023 07.
Article in English | MEDLINE | ID: mdl-37293980

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) and other therapeutic cells show efficacy for cardiac damage, neurological disease, chronic lung disease, pediatric graft versus host disease, and several inflammatory conditions. Based on their anti-inflammatory and immune-modulatory activities, responsiveness, and secretion of beneficial factors, cellular therapeutics may provide benefits in acute and chronic traumatic injury. However, the use of live cells presents logistical challenges, especially for military trauma. MSCs are generally shipped and stored frozen but require sterile handling before infusion. This requires skilled personnel and equipment not readily available in a forward medical treatment facility or even a small community hospital. METHODS: Commercial human bone marrow- and adipose-derived MSCs from multiple donors were cultured under standard conditions, harvested and stored at 4°C in solution for up to 21 days. Cell viability, ATP content, apoptosis, proliferation capability, immunomodulation activity, and responsiveness were assessed after different amounts of time. RESULTS: Human MSCs can be stored at 4°C in MSC culture medium for 14 days while maintaining a reasonable level of viability and function. Both viability and function are reduced when MSCs are stored in crystalloid solutions. CONCLUSIONS: This approach makes it feasible to prepare cellular therapeutic agents in a laboratory or commercial facility and ship them under refrigerated conditions. Once they reach their destination, they can be stored at 4°C under conditions similar to blood products. Cells prepared and stored this way could also be used directly with minimal handling, making them more practical for both civilian and military trauma.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Child , Cells, Cultured , Immunomodulation , Freezing , Culture Media , Cell Proliferation
2.
Shock ; 59(2): 294-299, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36730861

ABSTRACT

ABSTRACT: Background: Sepsis is the leading cause of mortality among burn patients that survive acute resuscitation. Clinical criteria have poor diagnostic value for burn-induced sepsis, making it difficult to diagnose. Protein biomarkers (e.g., procalcitonin) have been examined with limited success. We aimed to explore other biomarkers related to mitochondria (mitochondrial DNA [mtDNA]) and mitochondrial function of peripheral blood mononuclear cells (PBMCs) for sepsis diagnosis in burn patients. Methods: We conducted a follow-up analysis of a single center, prospective observational study of subjects (n = 10 healthy volunteers, n = 24 burn patients) to examine the diagnostic value of mtDNA and PBMC respirometry. Patients were enrolled regardless of sepsis status and followed longitudinally. Patient samples were classified as septic or not based on empiric clinical criteria. Isolated PBMCs were loaded into a high-resolution respirometer, and circulating mtDNA was measured with a PCR-based assay. Sequential Organ Failure Assessment (SOFA) criteria were also compared. Results: The SOFA criteria comparing septic versus before/nonseptic patients revealed significantly higher heart rate ( P = 0.012) and lower mean arterial pressure ( P = 0.039) in burn sepsis. MtDNA was significantly elevated in septic burn patients compared with healthy volunteers ( P < 0.0001) and nonseptic patients ( P < 0.0001), with no significant difference between healthy volunteers and nonseptic burn patients ( P = 0.187). The area under the ROC curve (AUC) for mtDNA was 0.685 (95% confidence interval = 0.50-0.86). For PBMC respirometry, burn patients exhibited increased routine and maximal respiration potential compared with healthy volunteers. However, no difference was found between nonseptic and septic patient samples. A subanalysis revealed a significant mortality difference in PBMC respirometry after sepsis diagnosis, wherein survivors had higher routine respiration ( P = 0.003) and maximal respiration ( P = 0.011) compared with nonsurvivors. Conclusion: Our findings reveal that mtDNA may have diagnostic value for burn sepsis, whereas PBMC respirometry is nonspecifically elevated in burns, but may have value in mortality prognosis. A larger, multisite study is warranted for further validity of the diagnostic value of mtDNA and PBMC respirometry as biomarkers for prognosis of sepsis and outcomes in burn patients.


Subject(s)
Burns , Sepsis , Humans , Leukocytes, Mononuclear , DNA, Mitochondrial , ROC Curve , Biomarkers , Prognosis , Burns/complications , Mitochondria
3.
Crit Care Explor ; 4(1): e0610, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35018348

ABSTRACT

OBJECTIVES: To compare the diagnostic value of clinical sepsis criteria to novel protein biomarkers in the burn patient. DESIGN: Prospective observational study. SETTING: American Burn Association verified Burn Center ICU. PATIENTS: Burn patients (n = 24) and healthy volunteers (n = 10). INTERVENTIONS: Enrolled burn patients (n = 24) were stratified based on whether or not they met a clinical definition of sepsis. Four separate clinical criteria for sepsis were analyzed for their diagnostic sensitivity and specificity, which were compared to a panel of protein biomarkers. The most significant protein biomarkers were further analyzed via the area under the receiver operating characteristic curves (AUROCs). MEASUREMENTS AND MAIN RESULTS: Of the clinical criteria, SEPSIS-2 criteria led to the highest AUROC (0.781; p < 0.001), followed by the quick Sequential Organ Failure Assessment score (AUROC = 0.670; p = 0.022). Multiplexing revealed a number of inflammatory proteins (complement C5) and matrix metalloproteinases (MMP1, MMP7) that were significantly elevated in septic samples compared with both healthy controls and nonseptic burn samples. Furthermore, three proteins associated with endothelial dysfunction and glycocalyx shedding revealed diagnostic potential. Specifically, syndecan-1, p-selectin, and galectin-1 were all significantly elevated in sepsis, and all resulted in an AUROC greater than 0.7; analyzing the sum of these three markers led to an AUROC of 0.808. CONCLUSIONS: These data reveal several potential biomarkers that may help with sepsis diagnosis in the burn patient. Furthermore, the role of endotheliopathy as a mechanistic etiology for sepsis after burns warrants further investigation.

4.
J Burn Care Res ; 42(5): 870-879, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34057993

ABSTRACT

Adipose stem cells (ASCs) have shown therapeutic promise for various conditions, including burn injury. While ASCs have immunomodulatory properties, concerns exist over pro-coagulant activity after intravenous (IV) administration. In the present study, we examined IV human ASC delivery in terms of coagulation, organ function, and inflammation in a 40% total body surface area (TBSA) swine burn model. Anesthetized female Yorkshire swine were burned and randomized to receive 15 ml/kg Lactated Ringer's containing: no ASCs; a low dose (5 × 105 ASCs/kg); or a high dose (5 × 106 ASCs/kg). For biochemical analysis, blood was collected at baseline (BL), 3, 6, 12, and 24 h post-burn, while kidney and liver tissue was collected post-euthanasia. A significant, but transient, effect of ASCs was seen on prothrombin times and INR, wherein low doses revealed slight hypercoagulation. Burns increased partial thromboplastin time, fibrinogen, and d-dimer levels, which was unchanged with ASC administration. ASCs tended to exacerbate increases in bilirubin at 3 h, but this didn't reach statistical significance. A significant effect of ASCs on creatinine and BUN was seen, wherein low doses elevated levels at 24 h (creatinine, P = 0.0012; BUN, P = 0.0195). Hepatic and renal TUNEL staining were similar for all groups. A dose-dependent decrease in IL-8 was observed, while low doses significantly increased IL-1RA at 3h (P = 0.050), IL-12 at 12h (P = 0.021) and IL-6 at 24 h post-burn (P = 0.035). IV administration of xenogeneic ASCs slightly increased coagulation, but effects on burn-induced renal and hepatic dysfunction effects were minimal. Despite some significant immunomodulation, organ dysfunction effects were modest. Collectively, this study provides evidence to be skeptical about xenogeneic ASC administration in regards to burns.


Subject(s)
Adipose Tissue/cytology , Disease Models, Animal , Mesenchymal Stem Cell Transplantation/methods , Stem Cell Transplantation/methods , Wound Healing/physiology , Administration, Intravenous , Animals , Body Surface Area , Burns , Cell Culture Techniques , Swine
5.
Stem Cell Res Ther ; 12(1): 270, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33957963

ABSTRACT

BACKGROUND: Patients with severe burn injury (over 20% of the total body surface area) experience profound hypermetabolism which significantly prolongs wound healing. Adipose-derived stem cells (ASCs) have been proposed as an attractive solution for treating burn wounds, including the potential for autologous ASC expansion. While subcutaneous adipocytes display an altered metabolic profile post-burn, it is not known if this is the case with the stem cells associated with the adipose tissue. METHODS: ASCs were isolated from discarded burn skin of severely injured human subjects (BH, n = 6) and unburned subcutaneous adipose tissue of patients undergoing elective abdominoplasty (UH, n = 6) and were analyzed at passages 2, 4, and 6. Flow cytometry was used to quantify ASC cell surface markers CD90, CD105, and CD73. Mitochondrial abundance and reactive oxygen species (ROS) production were determined with MitoTracker Green and MitoSOX Red, respectively, while JC-10 Mitochondrial Membrane Potential Assays were also performed. Mitochondrial respiration and glycolysis were analyzed with a high-resolution respirometer (Seahorse XFe24 Analyzer). RESULTS: There was no difference in age between BH and UH (34 ± 6 and 41 ± 4 years, respectively, P = 0.49). While passage 2 ASCs had lower ASC marker expression than subsequent passages, there were no significant differences in the expression between BH and UH ASCs. Similarly, no differences in mitochondrial abundance or membrane potential were found amongst passages or groups. Two-way ANOVA showed a significant effect (P < 0.01) of passaging on mitochondrial ROS production, with increased ROS in BH ASCs at later passages. Oxidative phosphorylation capacities (leak and maximal respiration) increased significantly in BH ASCs (P = 0.035) but not UH ASCs. On the contrary, basal glycolysis significantly decreased in BH ASCs (P = 0.011) with subsequent passaging, but not UH ASCs. CONCLUSIONS: In conclusion, ASCs from burned individuals become increasingly oxidative and less glycolytic upon passaging when compared to ASCs from unburned patients. This increase in oxidative capacities was associated with ROS production in later passages. While the autologous expansion of ASCs holds great promise for treating burned patients with limited donor sites, the potential negative consequences of using them require further investigation.


Subject(s)
Adipocytes , Adipose Tissue , Cell Differentiation , Humans , Oxidative Stress , Reactive Oxygen Species , Stem Cells
6.
Innate Immun ; 26(5): 403-412, 2020 07.
Article in English | MEDLINE | ID: mdl-31906760

ABSTRACT

The acute systemic inflammatory response syndrome (SIRS) and multiorgan dysfunction (MOD) that occur in large burn injuries may be attributed, in part, to immunosuppressive responses such as decreased lymphocytes. However, the mitochondrial bioenergetics of lymphocytes after severe burn injury are poorly understood. The purpose of this study was to examine mitochondrial function of lymphocytes following severe burns in a swine model. Anesthetized Yorkshire swine (n = 17) sustained 40% total body surface area full-thickness contact burns. Blood was collected at pre-injury (Baseline; BL) and at 24 and 48 h after injury for complete blood cell analysis, flow cytometry, cytokine analysis, and ficoll separation of intact lymphocytes for high-resolution mitochondrial respirometry analysis. While neutrophil numbers increased, a concomitant decrease was found in lymphocytes (P < 0.001) after burn injury, which was not specific to CD4+ or CD8+ lymphocytes. No changes in immune cell population were observed from 24 h to 48 h post-injury. IL 12-23 decreased while a transient increase in IL 4 was found from BL to 24h (P < 0.05). CRP progressively increased from BL to 24h (P < 0.05) and 48h (P < 0.001) post-injury. Routine and maximal mitochondrial respiration progressively increased from BL to 24h (P < 0.05) and 48 h post-injury (P < 0.001). No changes were found in leak respiration or residual oxygen consumption. When considering the reduction in lymphocyte number, the total peripheral lymphocyte bioenergetics per volume of blood significantly decreased from BL to 24h and 48h (P < 0.05). For the first time, we were able to measure mitochondrial activity in intact lymphocyte mitochondria through high-resolution respirometry in a severely burned swine model. Our data showed that the non-specific reduction in peripheral T cells after injury was larger than the increased mitochondrial activity in those cells, which may be a compensatory mechanism for the total reduction in lymphocytes. Additional studies in the metabolic activation of T cell subpopulations may provide diagnostic or therapeutic targets after severe burn injury.


Subject(s)
Burns/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocytes/pathology , Mitochondria/metabolism , Animals , Burns/immunology , Cell Count , Cell Respiration , Cells, Cultured , Cytokines/blood , Disease Models, Animal , Humans , Oxidative Phosphorylation , Swine
7.
Am J Physiol Cell Physiol ; 317(6): C1229-C1238, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31532719

ABSTRACT

Severe burn injury results in systemic disruption of metabolic regulations and impaired cardiac function. Restoration of hemodynamic homeostasis utilizing intravenous (IV) fluids is critical for acute care of the burn victim. However, the effects of burns and resuscitation on cardiomyocyte mitochondria are currently unknown. The purpose of this study is to determine cardiac mitochondrial function in a swine burn model with subsequent resuscitation using either crystalloids or colloids. Anesthetized Yorkshire swine (n = 23) sustained 40% total body surface area burns and received IV crystalloids (n = 11) or colloids (n = 12) after recovery from anesthesia. Non-burned swine served as controls (n = 9). After euthanasia at 48 h, heart tissues were harvested, permeabilized, and analyzed by high-resolution respirometry. Citrate synthase (CS) activity was measured, and Western blots were performed to quantify proteins associated with mitochondrial fusion (OPA1), fission (FIS1), and mitophagy (PINK1). There were no differences in state 2 respiration or maximal oxidative phosphorylation. Coupled complex 1 respiration decreased, while uncoupled state 4O and complex II increased significantly due to burn injury, particularly in animals receiving colloids (P < 0.05). CS activity and electron transfer coupling efficiency were significantly lower in burned animals, particularly with colloid treatment (P < 0.05). Protein analysis revealed increased FIS1 but no differences in mitophagy in cardiac tissue from colloid-treated compared with crystalloid-treated swine. Taken together, severe burns alter mitochondrial respiration in heart tissue, which may be exacerbated by early IV resuscitation with colloids. Early IV burn resuscitation with colloids may require close hemodynamic observation. Mitochondrial stabilizing agents incorporated into resuscitation fluids may help the hemodynamic response to burn injury.


Subject(s)
Burns, Electric/therapy , Cardiotonic Agents/pharmacology , Fluid Therapy/methods , Heart/drug effects , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Animals , Burns, Electric/genetics , Burns, Electric/metabolism , Burns, Electric/pathology , Cardiotonic Agents/chemistry , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Colloids , Crystallization , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Regulation/drug effects , Heart/physiopathology , Hemodynamics/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Phosphorylation/drug effects , Protein Kinases/genetics , Protein Kinases/metabolism , Resuscitation/methods , Skin/drug effects , Skin/injuries , Skin/metabolism , Swine
8.
Virology ; 384(1): 114-24, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19038412

ABSTRACT

Simian virus 40 (SV40) isolates differ in oncogenic potential in Syrian golden hamsters following intraperitoneal inoculation. Here we describe the effect of intravenous exposure on tumor induction by SV40. Strains SVCPC (simple regulatory region) and VA45-54(2E) (complex regulatory region) were highly oncogenic following intravenous inoculation, producing a spectrum of tumor types. Three lymphoma cell lines were established; all expressed SV40 T-antigen, were immortalized for growth in culture, and were tumorigenic following transplantation in vivo. New monoclonal antibodies directed against hamster lymphocyte surface antigens are described. The cell lines expressed MHC class II and macrophage markers and were highly phagocytic, indicating a histiocytic origin. Many hamsters that remained tumor-free developed SV40 T-antigen antibodies, suggesting that viral replication occurred. This study shows that route of exposure influences the pathogenesis of SV40-mediated carcinogenesis, that SV40 strain VA45-54(2E) is lymphomagenic in hamsters, that hamster lymphoid cells of histiocytic origin can be transformed in vivo and established in culture, and that reagents to hamster leukocyte differentiation molecules are now available.


Subject(s)
Lymphoma/virology , Simian virus 40/pathogenicity , Tumor Virus Infections/virology , Animals , Antibodies, Viral/immunology , Antibody Formation , Antigens, Viral/genetics , Cells, Cultured , Cricetinae , DNA, Viral/genetics , Haplorhini , Lymph Nodes/immunology , Lymphoma/immunology , Lymphoma/pathology , Mesocricetus , Regulatory Sequences, Nucleic Acid , Simian virus 40/genetics , Tumor Virus Infections/immunology , Tumor Virus Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...