Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metallomics ; 10(1): 93-107, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29131211

ABSTRACT

Resistance to platinum drugs (used in >50% of cancer chemotherapies) is a clinical problem. Other precious metal complexes with distinct mechanisms of action might overcome this. Half-sandwich organometallic complexes containing arene or cyclopentadienyl (Cp) ligands show promise. We screened two iridium(iii) complexes [Ir(CpXbiph)(ppy)Cl] (ZL49, 1, ppy = phenylpyridine) and [Ir(CpXph)(azpyNMe2)Cl]PF6 (ZL109, 2, azpyNMe2 = N,N-dimethylphenylazopyridine) in 916 cancer cell lines from 28 tissue types. On average, complex 2 was 78× more potent than 1, 36× more active than cisplatin (CDDP), and strongly active (nanomolar) in patient-derived ovarian cancer cell lines. RNA sequencing of A2780 ovarian cells revealed upregulation of antioxidant responses (NRF2, AP-1) consistent with observed induction of reactive oxygen species (ROS). Protein microarrays, high content imaging and cell cycle analysis showed S/G2 arrest, and late-stage DNA damage response without p53 requirement. The triple-negative breast cancer cell line OCUB-M was highly sensitive to 2 as were cell lines with KIT mutations. Complex 2 exhibits a markedly different pattern of antiproliferative activity compared to the 253 drugs in the Sanger Cancer Genome database, but is most similar to osmium(ii) arene complexes which share the same azopyridine ligand. Redox modulation and DNA damage can provide a multi-targeting strategy, allowing compounds such as 2 to overcome cellular resistance to platinum anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Iridium/chemistry , Neoplasms/pathology , Organometallic Compounds/pharmacology , Osmium/chemistry , Antineoplastic Agents/chemistry , Biomarkers, Tumor/genetics , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Gene Expression Profiling , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Organometallic Compounds/chemistry , Pharmacogenomic Testing , Tumor Cells, Cultured
2.
Dalton Trans ; 45(20): 8367-78, 2016 May 28.
Article in English | MEDLINE | ID: mdl-27109147

ABSTRACT

The rapidly growing area of catalytic ruthenium chemistry has provided new complexes with potential as organometallic anticancer agents with novel mechanisms of action. Here we report the anticancer activity of four neutral organometallic Ru(II) arene N-tosyl-1,2-diphenylethane-1,2-diamine (TsDPEN) tethered transfer hydrogenation catalysts. The enantiomers (R,R)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8) and (S,S)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8a) exhibited higher potency than cisplatin against A2780 human ovarian cancer cells. When the N-methyl was replaced by N-H, i.e. to give (R,R)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7) and (S,S)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7a), respectively, anticancer activity decreased >5-fold. Their antiproliferative activity appears to be linked to their ability to accumulate in cells, and their mechanism of action might involve inhibition of tubulin polymerisation. This appears to be the first report of the potent anticancer activity of tethered Ru(II) arene complexes, and the structure-activity relationship suggests that the N-methyl substituents are important for potency. In the National Cancer Institute 60-cancer-cell-line screen, complexes 8 and 8a exhibited higher activity than cisplatin towards a broad range of cancer cell lines. Intriguingly, in contrast to their potent anticancer properties, complexes 8/8a are poor catalysts for asymmetric transfer hydrogenation, whereas complexes 7/7a are effective asymmetric hydrogenation catalysts.


Subject(s)
Antineoplastic Agents/toxicity , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Hydrogen/chemistry , Ruthenium/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Catalysis , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/metabolism , Coordination Complexes/toxicity , Drug Screening Assays, Antitumor , Humans , Hydrogenation , Stereoisomerism , Structure-Activity Relationship , Tubulin/metabolism
3.
Proc Natl Acad Sci U S A ; 112(29): E3800-5, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26162681

ABSTRACT

The organometallic "half-sandwich" compound [Os(η(6)-p-cymene)(4-(2-pyridylazo)-N,N-dimethylaniline)I]PF6 is 49× more potent than the clinical drug cisplatin in the 809 cancer cell lines that we screened and is a candidate drug for cancer therapy. We investigate the mechanism of action of compound 1 in A2780 epithelial ovarian cancer cells. Whole-transcriptome sequencing identified three missense mutations in the mitochondrial genome of this cell line, coding for ND5, a subunit of complex I (NADH dehydrogenase) in the electron transport chain. ND5 is a proton pump, helping to maintain the coupling gradient in mitochondria. The identified mutations correspond to known protein variants (p.I257V, p.N447S, and p.L517P), not reported previously in epithelial ovarian cancer. Time-series RNA sequencing suggested that osmium-exposed A2780 cells undergo a metabolic shunt from glycolysis to oxidative phosphorylation, where defective machinery, associated with mutations in complex I, could enhance activity. Downstream events, measured by time-series reverse-phase protein microarrays, high-content imaging, and flow cytometry, showed a dramatic increase in mitochondrially produced reactive oxygen species (ROS) and subsequent DNA damage with up-regulation of ATM, p53, and p21 proteins. In contrast to platinum drugs, exposure to this organo-osmium compound does not cause significant apoptosis within a 72-h period, highlighting a different mechanism of action. Superoxide production in ovarian, lung, colon, breast, and prostate cancer cells exposed to three other structurally related organo-Os(II) compounds correlated with their antiproliferative activity. DNA damage caused indirectly, through selective ROS generation, may provide a more targeted approach to cancer therapy and a concept for next-generation metal-based anticancer drugs that combat platinum resistance.


Subject(s)
Neoplasms, Glandular and Epithelial/metabolism , Organometallic Compounds/pharmacology , Osmium Compounds/pharmacology , Ovarian Neoplasms/metabolism , Apoptosis/drug effects , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Chromosomes, Human/genetics , DNA Damage/genetics , DNA, Mitochondrial/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mitochondria/genetics , Mutation/genetics , NF-E2-Related Factor 2/metabolism , Neoplasms, Glandular and Epithelial/drug therapy , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/pathology , Organometallic Compounds/chemistry , Organometallic Compounds/therapeutic use , Osmium Compounds/chemistry , Osmium Compounds/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Oxidative Stress/drug effects , Oxidative Stress/genetics , Sequence Analysis, RNA , Transcription Factor AP-1/metabolism
4.
Angew Chem Int Ed Engl ; 53(15): 3941-6, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24616129

ABSTRACT

Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph) )Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp(xbiph) ) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η(5) -Cp(xbiph) )Ir(phpy)(py)](+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2 O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.


Subject(s)
Antineoplastic Agents/chemistry , Cisplatin/chemistry , Iridium/chemistry , Organometallic Compounds/chemistry , Catalysis , Humans , Models, Molecular , Reactive Oxygen Species , Structure-Activity Relationship
5.
Chemistry ; 19(45): 15199-209, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24114923

ABSTRACT

Four chiral Os(II) arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 1, and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction.


Subject(s)
Antineoplastic Agents/therapeutic use , Organometallic Compounds/chemistry , Osmium/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Ligands , Osmium/chemistry , X-Ray Diffraction
6.
ACS Chem Biol ; 8(6): 1335-43, 2013.
Article in English | MEDLINE | ID: mdl-23618382

ABSTRACT

Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (Ir(III)) complexes [Ir(Cp(x))(XY)Cl](+/0) (Cp(x) = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cp(x) ring. In comparison, highly potent complex 4 (Cp(x) = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these Ir(III) complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 µM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic Ir(III) complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Iridium/chemistry , Iridium/pharmacology , Neoplasms/drug therapy , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Mitochondria/drug effects , Mitochondria/pathology , Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovary/drug effects , Ovary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...