Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 15(1): 166, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867276

ABSTRACT

BACKGROUND: Hypertrophic scarring results from myofibroblast differentiation and persistence during wound healing. Currently no effective treatment for hypertrophic scarring exists however, autologous fat grafting has been shown to improve scar elasticity, appearance, and function. The aim of this study was to understand how paracrine factors from adipose tissues and adipose-derived stromal cells (ADSC) affect fibroblast to myofibroblast differentiation. METHODS: The transforming growth factor-ß1 (TGF-ß1) induced model of myofibroblast differentiation was used to test the effect of conditioned media from adipose tissue, ADSC or lipid on the proportion of fibroblasts and myofibroblasts. RESULTS: Adipose tissue conditioned media inhibited the differentiation of fibroblasts to myofibroblasts but this inhibition was not observed following treatment with ADSC or lipid conditioned media. Hepatocyte growth factor (HGF) was readily detected in the conditioned medium from adipose tissue but not ADSC. Cells treated with HGF, or fortinib to block HGF, demonstrated that HGF was not responsible for the inhibition of myofibroblast differentiation. Conditioned media from adipose tissue was shown to reduce the proportion of myofibroblasts when added to fibroblasts previously treated with TGF-ß1, however, conditioned media treatment was unable to significantly reduce the proportion of myofibroblasts in cell populations isolated from scar tissue. CONCLUSIONS: Cultured ADSC or adipocytes have been the focus of most studies, however, this work highlights the importance of considering whole adipose tissue to further our understanding of fat grafting. This study supports the use of autologous fat grafts for scar treatment and highlights the need for further investigation to determine the mechanism.


Subject(s)
Adipose Tissue , Cell Differentiation , Hepatocyte Growth Factor , Myofibroblasts , Transforming Growth Factor beta1 , Myofibroblasts/metabolism , Myofibroblasts/drug effects , Myofibroblasts/cytology , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Differentiation/drug effects , Culture Media, Conditioned/pharmacology , Humans , Hepatocyte Growth Factor/pharmacology , Hepatocyte Growth Factor/metabolism , Paracrine Communication/drug effects , Phenotype , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/cytology , Adipocytes/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Stromal Cells/metabolism , Stromal Cells/cytology , Stromal Cells/drug effects
2.
J Dent Res ; 91(7): 642-50, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22266525

ABSTRACT

Advances in tissue engineering have permitted the three-dimensional (3D) reconstruction of human oral mucosa for various in vivo and in vitro applications. Tissue-engineered oral mucosa have been further optimized in recent years for clinical applications as a suitable graft material for intra-oral and extra-oral repair and treatment of soft-tissue defects. Novel 3D in vitro models of oral diseases such as cancer, Candida, and bacterial invasion have been developed as alternatives to animal models for investigation of disease phenomena, their progression, and treatment, including evaluation of drug delivery systems. The introduction of 3D oral mucosal reconstructs has had a significant impact on the approaches to biocompatibility evaluation of dental materials and oral healthcare products as well as the study of implant-soft tissue interfaces. This review article discusses the recent advances in tissue engineering and applications of tissue-engineered human oral mucosa.


Subject(s)
Mouth Mucosa/cytology , Tissue Engineering , Absorbable Implants , Animals , Candidiasis, Oral/pathology , Cell Line, Transformed , Cleft Palate/surgery , Dental Implants , Dental Materials/toxicity , Diagnostic Imaging , Drug Delivery Systems , Gingival Recession/surgery , Humans , Imaging, Three-Dimensional , Keratinocytes/cytology , Models, Biological , Models, Structural , Mouth Mucosa/transplantation , Mouth Neoplasms/pathology , Skin, Artificial , Tissue Scaffolds
3.
Br J Cancer ; 105(10): 1582-92, 2011 Nov 08.
Article in English | MEDLINE | ID: mdl-21989184

ABSTRACT

BACKGROUND: Current organotypic models of dysplasia and oral squamous cell carcinoma (OSCC) lack the complexity that mimics in vivo tissue. Here we describe a three-dimensional in vitro model of the oral epithelium that replicates tumour progression from dysplasia to an invasive phenotype. METHODS: The OSCC cell lines were seeded as a cell suspension (D20, Cal27) or as multicellular tumour spheroids (FaDu) with oral fibroblasts on to a de-epidermised acellular dermis to generate tissue-engineered models and compared with patient biopsies. RESULTS: The D20 and Cal27 cells generated a model of epithelial dysplasia. Overtime Cal27 cells traversed the basement membrane and invaded the connective tissue to reproduce features of early invasive OSCC. When seeded onto a model of the normal oral mucosa, FaDu spheroids produced a histological picture mimicking carcinoma in situ with severe cellular atypia juxtaposed to normal epithelium. CONCLUSION: It is possible to culture in vitro models with the morphological appearance and histological characteristics of dysplasia and tumour cell invasion seen in vivo using native dermis. Such models could facilitate study of the molecular processes involved in malignant transformation, invasion and tumour growth as well as in vitro testing of new treatments, diagnostic tests and drug delivery systems for OSCC.


Subject(s)
Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Precancerous Conditions/pathology , Tissue Engineering , Flow Cytometry , Humans , Immunohistochemistry
4.
Oral Dis ; 17 Suppl 1: 73-84, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21382140

ABSTRACT

There are few topical formulations used for oral medicine applications most of which have been developed for the management of dermatological conditions. As such, numerous obstacles are faced when utilizing these preparations in the oral cavity, namely enzymatic degradation, taste, limited surface area, poor tissue penetration and accidental swallowing. In this review, we discuss common mucosal diseases such as oral cancer, mucositis, vesiculo-erosive conditions, infections, neuropathic pain and salivary dysfunction, which could benefit from topical delivery systems designed specifically for the oral mucosa, which are capable of sustained release. Each condition requires distinct penetration and drug retention profiles in order to optimize treatment and minimize side effects. Local drug delivery may provide a more targeted and efficient drug-delivery option than systemic delivery for diseases of the oral mucosa. We identify those mucosal diseases currently being treated, the challenges that must be overcome and the potential of novel therapies. Novel biological therapies such as macromolecular biological drugs, peptides and gene therapy may be of value in the treatment of many chronic oral conditions and thus in oral medicine if their delivery can be optimized.


Subject(s)
Drug Delivery Systems , Mouth Diseases/drug therapy , Biological Factors/therapeutic use , Delayed-Action Preparations , Genetic Therapy , Humans , Macromolecular Substances/therapeutic use , Molecular Targeted Therapy , Mouth Mucosa/drug effects , Mouth Neoplasms/drug therapy , Salivary Gland Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...