Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 103(1): 38-45, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16914134

ABSTRACT

In 2001, an outbreak of Mediterranean fruit fly in Adelaide was controlled by South Australian Government workers applying organophosphorus insecticides (OPs) to domestic gardens. Residents made claims of adverse effects associated with allegations that worker application practices were poor and led to contamination of homes, residents and pets. The concerns led to a Parliamentary enquiry, the suspension of OP applications for fruit fly control, and the investigation of alternative methods of combating fruit fly in metropolitan Adelaide. The extent of exposure of workers and residents was not estimated. This paper describes a simulated application of the OPs concerned (fenthion and malathion) with measurements of potential exposure through inhalation, dermal contact and deposition of pesticides on surfaces. The data were used as part of a toxicological risk assessment to determine the likely impact of the use of these insecticides. Malathion, used as a 1% suspension in a protein bait mixture, was found to have little potential for airborne exposure, although some workers were found to have up to 0.315 microg/cm(2) malathion deposited on overalls (principally on forearms) and over 500 microg deposited on liner gloves and hats, respectively. Risks to workers and residents were low, with exposures likely to be a small fraction of the acceptable daily intake. Fenthion, used as a 0.05% foliar cover spray, was found between 0.02 and 0.23 mg/m(3) in air 10 m downwind from spray activity and was unlikely to pose a significant risk to residents, since exposures were of short durations of up to 20 min. Personal air samples of spray workers averaged 0.55 mg/m(3) (Workplace Exposure Standard 0.20mg/m(3)). Since workers were usually engaged in spraying for a large proportion of the day, this demonstrates the need for respiratory protective equipment. Maximum deposition of fenthion on workers overalls ranged from 0.06 to over 0.20 microg/cm(2), although little was found on gloves and hats, suggesting workers were skilled in avoiding the plume of overspray. Dialkyl phosphates (metabolites of OP insecticides) were not detected in urine of workers, and there were no changes observed in serum cholinesterase (SChE) enzyme activities 24h following the simulation. These data suggest absorption of OP insecticides by workers was negligible. Deposition on surfaces 5 and 10 m downwind ranged from none detected to 145 microg/cm(2), suggesting that exposure of residents and children in contact with contaminated surfaces (such as garden furniture or play equipment) is possible. Estimates of the potential dermal intake of fenthion by children from contaminated surfaces suggested that risks of acute and chronic effects are slight, since exposures may occur for short periods at intervals of approximately 10 days during fruit fly outbreaks.


Subject(s)
Air Pollutants, Occupational/analysis , Fenthion/analysis , Insecticides/analysis , Malathion/analysis , Occupational Exposure/analysis , Animals , Australia , Ceratitis capitata , Child , Cholinesterases/blood , Environmental Exposure/analysis , Environmental Exposure/prevention & control , Humans , Insect Control , Protective Clothing , Risk Assessment
2.
Rev Environ Health ; 18(4): 231-50, 2003.
Article in English | MEDLINE | ID: mdl-15025188

ABSTRACT

Exposure to metals, particularly lead, remains a widespread issue that is associated with historical and current industrial practices. Whereas the toxic properties of metals are well described, exposure to metals per se is only one of many factors contributing to elevated blood metal concentrations and their consequent health effects in humans. The absorbed dose of metal is affected by geochemical, biochemical, and physiological parameters that influence the rate and extent of absorption. In children, the interplay among these factors can be of critical importance, especially when biochemical and physiological processes might not have matured to their normal adult status. Such immaturity represents an elevated risk to metal-exposed children because they might be more susceptible to enhanced absorption, especially via the oral route. This review brings together the more recent findings on the physiological mechanisms of metal absorption, especially lead, and examines several models that can be useful in assessing the potential for metal uptake in children.


Subject(s)
Environmental Exposure/adverse effects , Environmental Pollutants/pharmacokinetics , Intestinal Absorption , Lead Poisoning/metabolism , Lead/pharmacokinetics , Biological Availability , Biological Transport , Child , Environmental Pollutants/toxicity , Humans , Industry , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiopathology , Lead/toxicity , Lead Poisoning/physiopathology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...