Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
ACS Catal ; 13(18): 12310-12321, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37736118

ABSTRACT

Biocatalysis is important in the discovery, development, and manufacture of pharmaceuticals. However, the identification of enzymes for target transformations of interest requires major screening efforts. Here, we report a structure-based computational workflow to prioritize protein sequences by a score based on predicted activities on substrates, thereby reducing a resource-intensive laboratory-based biocatalyst screening. We selected imine reductases (IREDs) as a class of biocatalysts to illustrate the application of the computational workflow termed IREDFisher. Validation by using published data showed that IREDFisher can retrieve the best enzymes and increase the hit rate by identifying the top 20 ranked sequences. The power of IREDFisher is confirmed by computationally screening 1400 sequences for chosen reductive amination reactions with different levels of complexity. Highly active IREDs were identified by only testing 20 samples in vitro. Our speed test shows that it only takes 90 min to rank 85 sequences from user input and 30 min for the established IREDFisher database containing 591 IRED sequences. IREDFisher is available as a user-friendly web interface (https://enzymeevolver.com/IREDFisher). IREDFisher enables the rapid discovery of IREDs for applications in synthesis and directed evolution studies, with minimal time and resource expenditure. Future use of the workflow with other enzyme families could be implemented following the modification of the workflow scoring function.

2.
ACS Catal ; 13(17): 11771-11780, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37671181

ABSTRACT

Despite the increasing use of biocatalysis for organic synthesis, there are currently no databases that adequately capture synthetic biotransformations. The lack of a biocatalysis database prevents accelerating biocatalyst characterization efforts from being leveraged to quickly identify candidate enzymes for reactions or cascades, slowing their development. The RetroBioCat Database (available at retrobiocat.com) addresses this gap by capturing information on synthetic biotransformations and providing an analysis platform that allows biocatalysis data to be searched and explored through a range of highly interactive data visualization tools. This database makes it simple to explore available enzymes, their substrate scopes, and how characterized enzymes are related to each other and the wider sequence space. Data entry is facilitated through an openly accessible curation platform, featuring automated tools to accelerate the process. The RetroBioCat Database democratizes biocatalysis knowledge and has the potential to accelerate biocatalytic reaction development, making it a valuable resource for the community.

4.
J Am Chem Soc ; 144(46): 21088-21095, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36350999

ABSTRACT

The development of efficient and sustainable methods for the synthesis of nitrogen heterocycles is an important goal for the chemical industry. In particular, substituted chiral piperidines are prominent targets due to their prevalence in medicinally relevant compounds and their precursors. A potential biocatalytic approach to the synthesis of this privileged scaffold would be the asymmetric dearomatization of readily assembled activated pyridines. However, nature is yet to yield a suitable biocatalyst specifically for this reaction. Here, by combining chemical synthesis and biocatalysis, we present a general chemo-enzymatic approach for the asymmetric dearomatization of activated pyridines for the preparation of substituted piperidines with precise stereochemistry. The key step involves a stereoselective one-pot amine oxidase/ene imine reductase cascade to convert N-substituted tetrahydropyridines to stereo-defined 3- and 3,4-substituted piperidines. This chemo-enzymatic approach has proved useful for key transformations in the syntheses of antipsychotic drugs Preclamol and OSU-6162, as well as for the preparation of two important intermediates in synthetic routes of the ovarian cancer monotherapeutic Niraparib.


Subject(s)
Piperidines , Pyridines , Pyridines/chemistry , Stereoisomerism , Catalysis , Piperidines/chemistry , Imines/chemistry
5.
Chem Commun (Camb) ; 58(83): 11713-11716, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36178369

ABSTRACT

The unique ability of the 'electrochemical leaf' (e-Leaf) to drive and control nanoconfined enzyme cascades bidirectionally, while directly monitoring their rate in real-time as electrical current, is exploited to achieve deracemisation and stereoinversion of secondary alcohols using a single electrode in one pot. Two alcohol dehydrogenase enzymes with opposing enantioselectivities, from Thermoanaerobacter ethanolicus (selective for S) and Lactobacillus kefir (selective for R) are driven bidirectionally via coupling to the fast and quasi-reversible interconversion of NADP+/NADPH catalysed by ferredoxin NADP+ reductase - all enzymes being co-entrapped in a nanoporous indium tin oxide electrode. Activity of the Lactobacillus kefir enzyme depends on the binding of a non-catalytic Mg2+, allowing it to be switched off after an oxidative half-cycle, by adding EDTA - the S-selective enzyme, with a tightly-bound Zn2+, remaining fully active. Racemate → S or R → S conversions are thus achieved in high yield with unprecedented ease.


Subject(s)
Alcohol Dehydrogenase , Ferredoxins , Alcohol Dehydrogenase/metabolism , Edetic Acid , Electrochemistry , Ferredoxin-NADP Reductase/metabolism , Lactobacillus , NADP/metabolism
6.
ACS Catal ; 12(15): 8811-8821, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35966600

ABSTRACT

The importance of energized nanoconfinement for facilitating the study and execution of enzyme cascades that feature multiple exchangeable cofactors is demonstrated by experiments with carboxylic acid reductase (CAR), an enzyme that requires both NADPH and ATP during a single catalytic cycle. Conversion of cinnamic acid to cinnamaldehyde by a package of four enzymes loaded into and trapped in the random nanopores of an indium tin oxide (ITO) electrode is driven and monitored through the simultaneous delivery of electrical and chemical energy. The electrical energy is transduced by ferredoxin NADP+ reductase, which undergoes rapid, direct electron exchange with ITO and regenerates NADP(H). The chemical energy provided by phosphoenolpyruvate, a fuel contained in the bulk solution, is cotransduced by adenylate kinase and pyruvate kinase, which efficiently convert the AMP product back into ATP that is required for the next cycle. The use of the two-kinase system allows the recycling process to be dissected to evaluate the separate roles of AMP removal and ATP supply during presteady-state and steady-state catalysis.

7.
Nature ; 604(7904): 86-91, 2022 04.
Article in English | MEDLINE | ID: mdl-35388195

ABSTRACT

Chiral amine diastereomers are ubiquitous in pharmaceuticals and agrochemicals1, yet their preparation often relies on low-efficiency multi-step synthesis2. These valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Herein we characterize a multifunctional biocatalyst for amine synthesis, which operates using a mechanism that is, to our knowledge, previously unreported. This enzyme (EneIRED), identified within a metagenomic imine reductase (IRED) collection3 and originating from an unclassified Pseudomonas species, possesses an unusual active site architecture that facilitates amine-activated conjugate alkene reduction followed by reductive amination. This enzyme can couple a broad selection of α,ß-unsaturated carbonyls with amines for the efficient preparation of chiral amine diastereomers bearing up to three stereocentres. Mechanistic and structural studies have been carried out to delineate the order of individual steps catalysed by EneIRED, which have led to a proposal for the overall catalytic cycle. This work shows that the IRED family can serve as a platform for facilitating the discovery of further enzymatic activities for application in synthetic biology and organic synthesis.


Subject(s)
Amines , Oxidoreductases , Amination , Amines/chemistry , Biocatalysis , Imines/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , Stereoisomerism
8.
Chembiochem ; 23(7): e202200075, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35143703

ABSTRACT

The enantioselective oxidation of 2° alcohols to ketones is an important reaction in synthetic chemistry, especially if it can be achieved using O2 -driven alcohol oxidases under mild reaction conditions. However to date, oxidation of secondary alcohols using alcohol oxidases has focused on activated benzylic or allylic substrates, with unactivated secondary alcohols showing poor activity. Here we show that cholesterol oxidase (EC 1.1.3.6) could be engineered for activity towards a range of aliphatic, cyclic, acyclic, allylic and benzylic secondary alcohols. Additionally, since the variants demonstrated high (S)-selectivity, deracemisation reactions were performed in the presence of ammonia borane to obtain enantiopure (R)-alcohols.


Subject(s)
Alcohols , Cholesterol Oxidase , Catalysis , Ketones , Oxidation-Reduction , Stereoisomerism
9.
Nat Prod Rep ; 39(2): 335-388, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34879125

ABSTRACT

Covering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.


Subject(s)
Beauty , Cosmetics , Biocatalysis
10.
Nat Chem ; 13(2): 140-148, 2021 02.
Article in English | MEDLINE | ID: mdl-33380742

ABSTRACT

Finding faster and simpler ways to screen protein sequence space to enable the identification of new biocatalysts for asymmetric synthesis remains both a challenge and a rate-limiting step in enzyme discovery. Biocatalytic strategies for the synthesis of chiral amines are increasingly attractive and include enzymatic asymmetric reductive amination, which offers an efficient route to many of these high-value compounds. Here we report the discovery of over 300 new imine reductases and the production of a large (384 enzymes) and sequence-diverse panel of imine reductases available for screening. We also report the development of a facile high-throughput screen to interrogate their activity. Through this approach we identified imine reductase biocatalysts capable of accepting structurally demanding ketones and amines, which include the preparative synthesis of N-substituted ß-amino ester derivatives via a dynamic kinetic resolution process, with excellent yields and stereochemical purities.


Subject(s)
High-Throughput Screening Assays/methods , Oxidoreductases/isolation & purification , Amination/drug effects , Amines/chemistry , Biocatalysis , Imines/metabolism , Ketones/chemistry , Oxidoreductases/metabolism , Stereoisomerism
11.
Sci Adv ; 6(21): eaay9320, 2020 05.
Article in English | MEDLINE | ID: mdl-32494734

ABSTRACT

Imine reductases (IREDs) have shown great potential as catalysts for the asymmetric synthesis of industrially relevant chiral amines, but a limited understanding of sequence activity relationships makes rational engineering challenging. Here, we describe the characterization of 80 putative and 15 previously described IREDs across 10 different transformations and confirm that reductive amination catalysis is not limited to any particular subgroup or sequence motif. Furthermore, we have identified another dehydrogenase subgroup with chemoselectivity for imine reduction. Enantioselectivities were determined for the reduction of the model substrate 2-phenylpiperideine, and the effect of changing the reaction conditions was also studied for the reductive aminations of 1-indanone, acetophenone, and 4-methoxyphenylacetone. We have performed sequence-structure analysis to help explain clusters in activity across a phylogenetic tree and to inform rational engineering, which, in one case, has conferred a change in chemoselectivity that had not been previously observed.

12.
RSC Adv ; 10(33): 19501-19505, 2020 May 20.
Article in English | MEDLINE | ID: mdl-35515476

ABSTRACT

The generation of immobilised oxidase biocatalysts allowing multifunctional oxidation of valuable chemicals using molecular oxygen is described. Engineered galactose oxidase (GOase) variants M1 and M3-5, an engineered choline oxidase (AcCO6) and monoamine oxidase (MAO-N D9) displayed long-term stability and reusability over several weeks when covalently attached on a solid support, outperforming their free counterparts in terms of stability (more than 20 fold), resistance to heat at 60 °C, and tolerance to neat organic solvents such as hexane and toluene. These robust heterogenous oxidation catalysts can be recovered after each reaction and be reused multiple times for the oxidation of different substrates.

13.
J Am Chem Soc ; 141(3): 1201-1206, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30601002

ABSTRACT

The alkylation of amines with either alcohols or carboxylic acids represents a mild and safe alternative to the use of genotoxic alkyl halides and sulfonate esters. Here we report two complementary one-pot systems in which the reductive aminase (RedAm) from Aspergillus oryzae is combined with either (i) a 1° alcohol/alcohol oxidase (AO) or (ii) carboxylic acid/carboxylic acid reductase (CAR) to affect N-alkylation reactions. The application of both approaches has been exemplified with respect to substrate scope and also preparative scale synthesis. These new biocatalytic methods address issues facing alternative traditional synthetic protocols such as harsh conditions, overalkylation and complicated workup procedures.


Subject(s)
Alcohols/chemistry , Amines/chemical synthesis , Carboxylic Acids/chemistry , Oxidoreductases Acting on CH-NH2 Group Donors/chemistry , Alcohol Oxidoreductases/chemistry , Alkylation , Aspergillus oryzae/enzymology , Biocatalysis , Molecular Structure , Oxidoreductases/chemistry
14.
Angew Chem Int Ed Engl ; 58(15): 4948-4952, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30633837

ABSTRACT

In living cells, redox chains rely on nanoconfinement using tiny enclosures, such as the mitochondrial matrix or chloroplast stroma, to concentrate enzymes and limit distances that nicotinamide cofactors and other metabolites must diffuse. In a chemical analogue exploiting this principle, nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+ are cycled rapidly between ferredoxin-NADP+ reductase and a second enzyme-the pairs being juxtaposed within the 5-100 nm scale pores of an indium tin oxide electrode. The resulting electrode material, denoted (FNR+E2)@ITO/support, can drive and exploit a potentially large number of enzyme-catalysed reactions.

15.
Chembiochem ; 20(2): 276-281, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30338899

ABSTRACT

Structure-guided directed evolution of choline oxidase has been carried out by using the oxidation of hexan-1-ol to hexanal as the target reaction. A six-amino-acid variant was identified with a 20-fold increased kcat compared to that of the wild-type enzyme. This variant enabled the oxidation of 10 mm hexanol to hexanal in less than 24 h with 100 % conversion. Furthermore, this variant showed a marked increase in thermostability with a corresponding increase in Tm of 20 °C. Improved solvent tolerance was demonstrated with organic solvents including ethyl acetate, heptane and cyclohexane, thereby enabling improved conversions to the aldehyde by up to 30 % above conversion for the solvent-free system. Despite the evolution of choline oxidase towards hexan-1-ol, this new variant also showed increased specific activities (by up to 100-fold) for around 50 primary aliphatic, unsaturated, branched, cyclic, benzylic and halogenated alcohols.


Subject(s)
Alcohol Oxidoreductases/metabolism , Alcohols/metabolism , Protein Engineering , Alcohol Oxidoreductases/chemistry , Alcohols/chemistry , Colletotrichum/enzymology , Models, Molecular , Molecular Structure , Oxidation-Reduction
16.
Methods Enzymol ; 608: 131-149, 2018.
Article in English | MEDLINE | ID: mdl-30173761

ABSTRACT

Synthesis of the chiral amine moiety is a key challenge for synthetic organic chemistry due to its prevalence in many biologically active molecules. Imine reductase and amine oxidase enzymes have enabled the biocatalytic synthesis of a host of chiral amine compounds. In this chapter, procedures for the synthesis of chiral amines using imine reductases (IREDs), the recently discovered IRED homologues reductive aminases, and amine oxidases (AOs) are described. Amine oxidases have been the subject of mutagenesis approaches for improvement of substrate scope. The high-throughput screening method for determining active variants in amine oxidase libraries is illustrated. Finally, in an approach which takes inspiration from nature, many enzymes can be combined with each other in cascade reactions. The incorporation of imine reductase and monoamine oxidase biocatalysts into several cascade reactions, both in vitro and in vivo (where the approach moves toward synthetic biology), is reported.


Subject(s)
Amines/metabolism , Aminohydrolases/metabolism , Bacteria/enzymology , Fungi/enzymology , Monoamine Oxidase/metabolism , Oxidoreductases/metabolism , Protein Engineering/methods , Amines/chemistry , Aminohydrolases/genetics , Aspergillus niger/enzymology , Aspergillus niger/genetics , Aspergillus niger/metabolism , Bacteria/genetics , Bacteria/metabolism , Biocatalysis , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Fungi/genetics , Fungi/metabolism , Imines/chemistry , Imines/metabolism , Monoamine Oxidase/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Stereoisomerism , Streptomyces/enzymology , Streptomyces/genetics , Streptomyces/metabolism , Synthetic Biology/methods
17.
Org Biomol Chem ; 14(34): 8064-7, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27470519

ABSTRACT

three complementary biocatalytic routes were examined for the synthesis of the cyclopropyl amine (1R,2S)-2, which is a key building block for the anti-thrombotic agent ticagrelor 1. By employing either a ketoreductase, amidase or lipase biocatalyst, the key building blocks for synthesis of the amine 2 were obtained in 99.9, 92.5 and 46.3 ee, respectively.


Subject(s)
Adenosine/analogs & derivatives , Biocatalysis , Thrombosis/drug therapy , Adenosine/chemistry , Adenosine/pharmacology , Adenosine/therapeutic use , Amines/chemistry , Chemistry Techniques, Synthetic , Hydrolysis , Ticagrelor
18.
Nonlinear Dynamics Psychol Life Sci ; 19(3): 229-48, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26058334

ABSTRACT

Some but not all algorithms for detecting nonlinearity in experimental data, such as prediction methods and Lyapunov spectra, require a much larger amount of stable continuous data than is generally available from individual human participants. A new method for detecting nonlinearity in relatively short data sets, Monotonic Ectropy, computes the change in Shannon information as ordinal scale values evolve over time by comparing runs of various lengths and directions. This method compares two successive ordinal scale changes with similar monotonic changes for three successive ordinal scale values. The resulting index discriminates a chaotic Henon series from both Gaussian noise and phase-randomised surrogate series, the latter containing the stochastic structure of the Henon series but without the nonlinearity. The empirical utility of the technique is illustrated using mood rating data obtained from two participants, one suffering from chronic depression, the other showing no signs of the disorder. Although Monotonic Ectropy discriminated between the mood ratings of the depressed and nondepressed subjects, evidence for nonlinearity was only obtained using Lempel-Ziv complexity, a measure based on symbolic dynamics. This was probably due to Monotonic Ectropy's unique sensitivity to edge-of-chaos phenomena.

19.
Appl Microbiol Biotechnol ; 99(3): 1229-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25104031

ABSTRACT

This work demonstrates the first example of the immobilisation of MAO-N whole cells to produce a biocatalyst that remained suitable for repetitive use after 11 months of storage and stable up to 15 months after immobilisation. The production of Escherichia coli expressing recombinant MAO-N was scaled up to bioreactors under regulated, previously optimised conditions (10% DO, pH 7), and the amount of biomass was almost doubled compared to flask cultivation. Subsequently, pilot immobilisation of the whole-cell biocatalyst using LentiKats technology was performed. The amount of the immobilised biomass was optimised and the process was scaled up to a production level by immobilising 15 g of dry cell weight per litre of polyvinyl alcohol to produce 3 kg of whole-cell ready-to-use biocatalyst. The immobilised biocatalyst retained its initial activity over six consecutive biotransformations of the secondary amine model compound 3-azabicylo [3,3,0]octane, a building block of the hepatitis C drug telaprevir. Consecutive cultivation cycles in growth conditions not only increased the initial specific activity of biocatalyst produced on the industrial plant by more than 30%, but also significantly increased the rate of the biotransformation compared to the non-propagated biocatalyst.


Subject(s)
Cells, Immobilized/metabolism , Monoamine Oxidase/metabolism , Biogenic Monoamines/metabolism , Bioreactors/microbiology , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Monoamine Oxidase/genetics , Oxidation-Reduction , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...