Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Type of study
Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798472

ABSTRACT

Comparisons of multiple metazoan genomes have revealed the existence of ancestral linkage groups (ALGs), genomic scaffolds sharing sets of orthologous genes that have been inherited from ancestral animals for hundreds of millions of years (Simakov et al. 2022; Schultz et al. 2023) These ALGs have persisted across major animal taxa including Cnidaria, Deuterostomia, Ecdysozoa and Spiralia. Notwithstanding this general trend of chromosome-scale conservation, ALGs have been obliterated by extensive genome rearrangements in certain groups, most notably including Clitellata (oligochaetes and leeches), a group of easily overlooked invertebrates that is of tremendous ecological, agricultural and economic importance (Charles 2019; Barrett 2016). To further investigate these rearrangements, we have undertaken a comparison of 12 clitellate genomes (including four newly sequenced species) and 11 outgroup representatives. We show that these rearrangements began at the base of the Clitellata (rather than progressing gradually throughout polychaete annelids), that the inter-chromosomal rearrangements continue in several clitellate lineages and that these events have substantially shaped the evolution of the otherwise highly conserved Hox cluster.

2.
Sci Rep ; 13(1): 3822, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882485

ABSTRACT

Otoliths are calcium carbonate components of the stato-acoustical organ responsible for hearing and maintenance of the body balance in teleost fish. During their formation, control over, e.g., morphology and carbonate polymorph is influenced by complex insoluble collagen-like protein and soluble non-collagenous protein assemblages; many of these proteins are incorporated into their aragonite crystal structure. However, in the fossil record these proteins are considered lost through diagenetic processes, hampering studies of past biomineralization mechanisms. Here we report the presence of 11 fish-specific proteins (and several isoforms) in Miocene (ca. 14.8-14.6 Ma) phycid hake otoliths. These fossil otoliths were preserved in water-impermeable clays and exhibit microscopic and crystallographic features indistinguishable from modern representatives, consistent with an exceptionally pristine state of preservation. Indeed, these fossil otoliths retain ca. 10% of the proteins sequenced from modern counterparts, including proteins specific to inner ear development, such as otolin-1-like proteins involved in the arrangement of the otoliths into the sensory epithelium and otogelin/otogelin-like proteins that are located in the acellular membranes of the inner ear in modern fish. The specificity of these proteins excludes the possibility of external contamination. Identification of a fraction of identical proteins in modern and fossil phycid hake otoliths implies a highly conserved inner ear biomineralization process through time.


Subject(s)
Fossils , Otolithic Membrane , Animals , Fishes , Fish Proteins , Acoustics , Calcium Carbonate
3.
Evol Dev ; 22(6): 471-493, 2020 11.
Article in English | MEDLINE | ID: mdl-33226195

ABSTRACT

In the animal kingdom, behavioral traits encompass a broad spectrum of biological phenotypes that have critical roles in adaptive evolution, but an EvoDevo approach has not been broadly used to study behavior evolution. Here, we propose that, by integrating two leech model systems, each of which has already attained some success in its respective field, it is possible to take on behavioral traits with an EvoDevo approach. We first identify the developmental changes that may theoretically lead to behavioral evolution and explain why an EvoDevo study of behavior is challenging. Next, we discuss the pros and cons of the two leech model species, Hirudo, a classic model for invertebrate neurobiology, and Helobdella, an emerging model for clitellate developmental biology, as models for behavioral EvoDevo research. Given the limitations of each leech system, neither is particularly strong for behavioral EvoDevo. However, the two leech systems are complementary in their technical accessibilities, and they do exhibit some behavioral similarities and differences. By studying them in parallel and together with additional leech species such as Haementeria, it is possible to explore the different levels of behavioral development and evolution.


Subject(s)
Behavior, Animal , Biological Evolution , Leeches/embryology , Leeches/physiology , Animals , Leeches/growth & development , Models, Animal , Species Specificity
4.
Article in English | MEDLINE | ID: mdl-30721348

ABSTRACT

Leeches in the wild are often found on smooth surfaces, such as vegetation, smooth rocks or human artifacts such as bottles and cans, thus exhibiting what appears to be a "substrate texture preference". Here, we have reproduced this behavior under controlled circumstances, by allowing leeches to step about freely on a range of silicon carbide substrates (sandpaper). To begin to understand the neural mechanisms underlying this texture preference behavior, we have determined relevant parameters of leech behavior both on uniform substrates of varying textures, and in a behavior choice paradigm in which the leech is confronted with a choice between rougher and smoother substrate textures at each step. We tested two non-exclusive mechanisms which could produce substrate texture preference: (1) a Differential Diffusion mechanism, in which a leech is more likely to stop moving on a smooth surface than on a rough one, and (2) a Smoothness Selection mechanism, in which a leech is more likely to attach its front sucker (prerequisite for taking a step) to a smooth surface than to a rough one. We propose that both mechanisms contribute to the texture preference exhibited by leeches.


Subject(s)
Behavior, Animal/physiology , Leeches/physiology , Animals
5.
mSystems ; 3(5)2018.
Article in English | MEDLINE | ID: mdl-30320217

ABSTRACT

In horizontally transmitted symbioses, structural, biochemical, and molecular features both facilitate host colonization by specific symbionts and mediate their persistent carriage. In the association between the squid Euprymna scolopes and its luminous bacterial partner Vibrio fischeri, the symbionts interact with two epithelial fields; they interact (i) transiently with the superficial ciliated field that potentiates colonization and regresses within days of colonization and (ii) persistently with the cells that line the internal crypts, whose ultrastructure changes in response to the symbionts. Development of the association creates conditions that promote the symbiotic partner over the lifetime of the host. To determine whether light organ maturation requires continuous interactions with V. fischeri or only the signaling that occurs during its initiation, we compared 4-week-old squid that were uncolonized with those colonized either persistently by wild-type V. fischeri or transiently by a V. fischeri mutant that triggers early events in morphogenesis but does not persist. Microscopic analysis of the light organs showed that, while morphogenesis of the superficial ciliated field is greatly accelerated by V. fischeri colonization, its eventual outcome is largely independent of colonization state. In contrast, the symbiont-induced changes in crypt cell shape require persistent host-symbiont interaction, reflected in the similarity between uncolonized and transiently colonized animals. Transcriptomic analyses reflected the microscopy results; host gene expression at 4 weeks was due primarily to the persistent interactions of host and symbiont cells. Further, the transcriptomic signature of specific pathways reflected the daily rhythm of symbiont release and regrowth and required the presence of the symbionts. IMPORTANCE A long-term relationship between symbiotic partners is often characterized by development and maturation of host structures that harbor the symbiont cells over the host's lifetime. To understand the mechanisms involved in symbiosis maintenance more fully, we studied the mature bobtail squid, whose light-emitting organ, under experimental conditions, can be transiently or persistently colonized by Vibrio fischeri or remain uncolonized. Superficial anatomical changes in the organ were largely independent of symbiosis. However, both the microanatomy of cells with which symbionts interact and the patterns of gene expression in the mature animal were due principally to the persistent interactions of host and symbiont cells rather than to a response to early colonization events. Further, the characteristic pronounced daily rhythm on the host transcriptome required persistent V. fischeri colonization of the organ. This experimental study provides a window into how persistent symbiotic colonization influences the form and function of host animal tissues.

6.
Proc Natl Acad Sci U S A ; 114(36): 9510-9516, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28835539

ABSTRACT

We show that mucociliary membranes of animal epithelia can create fluid-mechanical microenvironments for the active recruitment of the specific microbiome of the host. In terrestrial vertebrates, these tissues are typically colonized by complex consortia and are inaccessible to observation. Such tissues can be directly examined in aquatic animals, providing valuable opportunities for the analysis of mucociliary activity in relation to bacteria recruitment. Using the squid-vibrio model system, we provide a characterization of the initial engagement of microbial symbionts along ciliated tissues. Specifically, we developed an empirical and theoretical framework to conduct a census of ciliated cell types, create structural maps, and resolve the spatiotemporal flow dynamics. Our multiscale analyses revealed two distinct, highly organized populations of cilia on the host tissues. An array of long cilia ([Formula: see text]25 [Formula: see text]m) with metachronal beat creates a flow that focuses bacteria-sized particles, at the exclusion of larger particles, into sheltered zones; there, a field of randomly beating short cilia ([Formula: see text]10 [Formula: see text]m) mixes the local fluid environment, which contains host biochemical signals known to prime symbionts for colonization. This cilia-mediated process represents a previously unrecognized mechanism for symbiont recruitment. Each mucociliary surface that recruits a microbiome such as the case described here is likely to have system-specific features. However, all mucociliary surfaces are subject to the same physical and biological constraints that are imposed by the fluid environment and the evolutionary conserved structure of cilia. As such, our study promises to provide insight into universal mechanisms that drive the recruitment of symbiotic partners.


Subject(s)
Aliivibrio fischeri/physiology , Decapodiformes/microbiology , Sense Organs/cytology , Aliivibrio fischeri/genetics , Animals , Cilia , Decapodiformes/cytology , Epithelium/ultrastructure , Microbiota , Microscopy, Video , Mucus , Sense Organs/microbiology , Symbiosis
7.
Dev Genes Evol ; 227(6): 375-387, 2017 11.
Article in English | MEDLINE | ID: mdl-28105525

ABSTRACT

The protein Crumbs is a determinant of apical-basal cell polarity and plays a role in apoptosis of epithelial cells and their protection against photodamage. Using the squid-vibrio system, a model for development of symbiotic partnerships, we examined the modulation of the crumbs gene in host epithelial tissues during initiation and maintenance of the association. The extracellular luminous symbiont Vibrio fischeri colonizes the apical surfaces of polarized epithelia in deep crypts of the Euprymna scolopes light organ. During initial colonization each generation, symbiont harvesting is potentiated by the biochemical and biophysical activity of superficial ciliated epithelia, which are several cell layers from the crypt epithelia where the symbionts reside. Within hours of crypt colonization, the symbionts induce the cell death mediated regression of the remote superficial ciliated fields. However, the crypt cells directly interacting with the symbiont are protected from death. In the squid host, we characterized the gene and encoded protein during light organ morphogenesis and in response to symbiosis. Features of the protein sequence and structure, phylogenetic relationships, and localization patterns in the eye supported assignment of the squid protein to the Crumbs family. In situ hybridization revealed that the crumbs transcript shows opposite expression at the onset of symbiosis in the two different regions of the light organ: elevated levels in the superficial epithelia were attenuated whereas low levels in the crypt epithelia were turned up. Although a rhythmic association in which the host controls the symbiont population over the day-night cycle begins in the juvenile upon colonization, cycling of crumbs was evident only in the adult organ with peak expression coincident with maximum symbiont population and luminescence. Our results provide evidence that crumbs responds to symbiont cues that induce developmental apoptosis and to symbiont population dynamics correlating with luminescence-based stress throughout the duration of the host-microbe association.


Subject(s)
Aliivibrio fischeri/physiology , Decapodiformes/microbiology , Decapodiformes/physiology , Membrane Proteins/metabolism , Symbiosis , Amino Acid Sequence , Animals , Apoptosis , Cell Polarity , Decapodiformes/anatomy & histology , Decapodiformes/cytology , Epithelial Cells/cytology , Epithelial Cells/microbiology , Eye/microbiology , Gene Expression , Membrane Proteins/chemistry , Membrane Proteins/genetics
8.
Integr Comp Biol ; 56(5): 776-783, 2016 11.
Article in English | MEDLINE | ID: mdl-27371387

ABSTRACT

The entrainment of circadian rhythms, physiological cycles with a period of about 24 h, is regulated by a variety of mechanisms, including nonvisual photoreception. While circadian rhythms have been shown to be integral to many processes in multicellular organisms, including immune regulation, the effect of circadian rhythms on symbiosis, or host-microbe interactions, has only recently begun to be studied. This review summarizes recent work in the interactions of both pathogenic and mutualistic associations with host and symbiont circadian rhythms, focusing specifically on three mutualistic systems in which this phenomenon has been best studied. One important theme taken from these studies is the fact that mutualisms are profoundly affected by the circadian rhythms of the host, but that the microbial symbionts in these associations can, in turn, manipulate host rhythms. The interplay between circadian rhythms and symbiosis is a promising new field with effects that should be kept in mind when designing future studies across biology.


Subject(s)
Circadian Clocks , Host-Pathogen Interactions/physiology , Microbiological Phenomena , Symbiosis , Animals
9.
Cell Microbiol ; 18(11): 1642-1652, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27062511

ABSTRACT

Recent research has shown that the microbiota affects the biology of associated host epithelial tissues, including their circadian rhythms, although few data are available on how such influences shape the microarchitecture of the brush border. The squid-vibrio system exhibits two modifications of the brush border that supports the symbionts: effacement and repolarization. Together these occur on a daily rhythm in adult animals, at the dawn expulsion of symbionts into the environment, and symbiont colonization of the juvenile host induces an increase in microvillar density. Here we sought to define how these processes are related and the roles of both symbiont colonization and environmental cues. Ultrastructural analyses showed that the juvenile-organ brush borders also efface concomitantly with daily dawn-cued expulsion of symbionts. Manipulation of the environmental light cue and juvenile symbiotic state demonstrated that this behaviour requires the light cue, but not colonization. In contrast, symbionts were required for the observed increase in microvillar density that accompanies post dawn brush-border repolarization; this increase was induced solely by host exposure to phosphorylated lipid A of symbiont cells. These data demonstrate that a partnering of environmental and symbiont cues shapes the brush border and that microbe-associated molecular patterns play a role in the regulation of brush-border microarchitecture.


Subject(s)
Decapodiformes/physiology , Microvilli/microbiology , Vibrio/physiology , Animals , Circadian Rhythm , Decapodiformes/cytology , Decapodiformes/microbiology , Epithelial Cells/microbiology , Epithelial Cells/ultrastructure , Light , Microvilli/ultrastructure , Sense Organs/cytology , Sense Organs/microbiology , Symbiosis/radiation effects
10.
Proc Natl Acad Sci U S A ; 112(2): 566-71, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25550509

ABSTRACT

Glycans have emerged as critical determinants of immune maturation, microbial nutrition, and host health in diverse symbioses. In this study, we asked how cyclic delivery of a single host-derived glycan contributes to the dynamic stability of the mutualism between the squid Euprymna scolopes and its specific, bioluminescent symbiont, Vibrio fischeri. V. fischeri colonizes the crypts of a host organ that is used for behavioral light production. E. scolopes synthesizes the polymeric glycan chitin in macrophage-like immune cells called hemocytes. We show here that, just before dusk, hemocytes migrate from the vasculature into the symbiotic crypts, where they lyse and release particulate chitin, a behavior that is established only in the mature symbiosis. Diel transcriptional rhythms in both partners further indicate that the chitin is provided and metabolized only at night. A V. fischeri mutant defective in chitin catabolism was able to maintain a normal symbiont population level, but only until the symbiotic organ reached maturity (∼ 4 wk after colonization); this result provided a direct link between chitin utilization and symbiont persistence. Finally, catabolism of chitin by the symbionts was also specifically required for a periodic acidification of the adult crypts each night. This acidification, which increases the level of oxygen available to the symbionts, enhances their capacity to produce bioluminescence at night. We propose that other animal hosts may similarly regulate the activities of epithelium-associated microbial communities through the strategic provision of specific nutrients, whose catabolism modulates conditions like pH or anoxia in their symbionts' habitat.


Subject(s)
Aliivibrio fischeri/metabolism , Decapodiformes/metabolism , Decapodiformes/microbiology , Polysaccharides/metabolism , Symbiosis/physiology , Aliivibrio fischeri/genetics , Amino Acid Sequence , Animals , Base Sequence , Chitin/genetics , Chitin/metabolism , DNA/genetics , Darkness , Decapodiformes/genetics , Genes, Bacterial , Hemocytes/metabolism , Hexosaminidases/genetics , Hexosaminidases/metabolism , Hydrogen-Ion Concentration , Luminescence , Molecular Sequence Data , Mutation , Oligosaccharides/genetics , Oligosaccharides/metabolism , Symbiosis/genetics
11.
Environ Microbiol ; 16(12): 3669-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24802887

ABSTRACT

Most bacterial species make transitions between habitats, such as switching from free living to symbiotic niches. We provide evidence that a galaxin protein, EsGal1, of the squid Euprymna scolopes participates in both: (i) selection of the specific partner Vibrio fischeri from the bacterioplankton during symbiosis onset and, (ii) modulation of V. fischeri growth in symbiotic maintenance. We identified two galaxins in transcriptomic databases and showed by quantitative reverse-transcriptase polymerase chain reaction that one (esgal1) was dominant in the light organ. Further, esgal1 expression was upregulated by symbiosis, a response that was partially achieved with exposure to symbiont cell-envelope molecules. Confocal immunocytochemistry of juvenile animals localized EsGal1 to the apical surfaces of light-organ epithelia and surrounding mucus, the environment in which V. fischeri cells aggregate before migration into the organ. Growth assays revealed that one repeat of EsGal1 arrested growth of Gram-positive bacterial cells, which represent the cell type first 'winnowed' during initial selection of the symbiont. The EsGal1-derived peptide also significantly decreased the growth rate of V. fischeri in culture. Further, when animals were exposed to an anti-EsGal1 antibody, symbiont population growth was significantly increased. These data provide a window into how hosts select symbionts from a rich environment and govern their growth in symbiosis.


Subject(s)
Aliivibrio fischeri/physiology , Decapodiformes/metabolism , Decapodiformes/microbiology , Proteins/metabolism , Symbiosis , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/growth & development , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Decapodiformes/genetics , Epithelium/chemistry , Mucus/chemistry , Peptides/pharmacology , Proteins/analysis , Proteins/chemistry , Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome
12.
Biol Bull ; 226(1): 56-68, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24648207

ABSTRACT

The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.


Subject(s)
Aliivibrio fischeri/physiology , Decapodiformes/cytology , Decapodiformes/microbiology , Epithelial Cells/cytology , Host-Pathogen Interactions/physiology , Morphogenesis/physiology , Symbiosis , Actin Cytoskeleton/metabolism , Animals , Apoptosis , Decapodiformes/enzymology , Decapodiformes/growth & development , Epithelial Cells/enzymology , Matrix Metalloproteinases/metabolism , Microscopy, Confocal
13.
Cell Host Microbe ; 14(2): 183-94, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23954157

ABSTRACT

Upon transit to colonization sites, bacteria often experience critical priming that prepares them for subsequent, specific interactions with the host; however, the underlying mechanisms are poorly described. During initiation of the symbiosis between the bacterium Vibrio fischeri and its squid host, which can be observed directly and in real time, approximately five V. fischeri cells aggregate along the mucociliary membranes of a superficial epithelium prior to entering host tissues. Here, we show that these few early host-associated symbionts specifically induce robust changes in host gene expression that are critical to subsequent colonization steps. This exquisitely sensitive response to the host's specific symbiotic partner includes the upregulation of a host endochitinase, whose activity hydrolyzes polymeric chitin in the mucus into chitobiose, thereby priming the symbiont and also producing a chemoattractant gradient that promotes V. fischeri migration into host tissues. Thus, the host responds transcriptionally upon initial symbiont contact, which facilitates subsequent colonization.


Subject(s)
Aliivibrio fischeri/physiology , Decapodiformes/microbiology , Decapodiformes/physiology , Symbiosis , Animals , Chemotactic Factors/metabolism , Chitin/metabolism , Chitinases/metabolism , Disaccharides/metabolism , Gene Expression Profiling , Gene Expression Regulation , Molecular Sequence Data , Mucus/metabolism , Sequence Analysis, DNA
14.
Environ Microbiol ; 15(11): 2937-50, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23819708

ABSTRACT

We studied the Euprymna scolopes-Vibrio fischeri symbiosis to characterize, in vivo and in real time, the transition between the bacterial partner's free-living and symbiotic life styles. Previous studies using high inocula demonstrated that environmental V. fischeri cells aggregate during a 3 h period in host-shed mucus along the light organ's superficial ciliated epithelia. Under lower inoculum conditions, similar to the levels of symbiont cells in the environment, this interaction induces haemocyte trafficking into these tissues. Here, in experiments simulating natural conditions, microscopy revealed that at 3 h following first exposure, only ∼ 5 V. fischeri cells aggregated on the organ surface. These cells associated with host cilia and induced haemocyte trafficking. Symbiont viability was essential and mutants defective in symbiosis initiation and/or production of certain surface features, including the Mam7 protein, which is implicated in host cell attachment of V. cholerae, associated normally with host cilia. Studies with exopolysaccharide mutants, which are defective in aggregation, suggest a two-step process of V. fischeri cell engagement: association with host cilia followed by aggregation, i.e. host cell-symbiont interaction with subsequent symbiont-symbiont cell interaction. Taken together, these data provide a new model of early partner engagement, a complex model of host-symbiont interaction with exquisite sensitivity.


Subject(s)
Aliivibrio fischeri/pathogenicity , Bacterial Adhesion/physiology , Cilia/microbiology , Decapodiformes/microbiology , Symbiosis/physiology , Animals , Bacterial Adhesion/genetics , Bacterial Proteins/metabolism , Environment , Epithelium/microbiology , Hemocytes/physiology , Host-Pathogen Interactions/genetics , Light , Mucous Membrane/microbiology , Polysaccharides, Bacterial/genetics
15.
mBio ; 4(2)2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23549919

ABSTRACT

The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut.


Subject(s)
Aliivibrio fischeri/physiology , Cryptochromes/biosynthesis , Decapodiformes/enzymology , Decapodiformes/microbiology , Gene Expression Regulation/radiation effects , Luminescence , Symbiosis , Aliivibrio fischeri/metabolism , Animals , Decapodiformes/genetics
16.
Appl Environ Microbiol ; 78(13): 4620-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22522684

ABSTRACT

Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.


Subject(s)
Aliivibrio fischeri/physiology , Chemotactic Factors/metabolism , Chemotaxis , Chitin/metabolism , Decapodiformes/microbiology , Oligosaccharides/metabolism , Aliivibrio fischeri/growth & development , Aliivibrio fischeri/metabolism , Animals , Decapodiformes/metabolism , Symbiosis
17.
Semin Immunol ; 24(1): 3-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22154556

ABSTRACT

Recent research on a wide variety of systems has demonstrated that animals generally coevolve with their microbial symbionts. Although such relationships are most often established anew each generation, the partners associate with fidelity, i.e., they form exclusive alliances within the context of rich communities of non-symbiotic environmental microbes. The mechanisms by which this exclusivity is achieved and maintained remain largely unknown. Studies of the model symbiosis between the Hawaiian squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri provide evidence that the interplay between evolutionarily conserved features of the innate immune system, most notably MAMP/PRR interactions, and a specific feature of this association, i.e., luminescence, are critical for development and maintenance of this association. As such, in this partnership and perhaps others, symbiotic exclusivity is mediated by the synergism between a general animal-microbe 'language' and a 'secret language' that is decipherable only by the specific partners involved.


Subject(s)
Aliivibrio fischeri/immunology , Biological Evolution , Decapodiformes/immunology , Decapodiformes/microbiology , Symbiosis , Animals , Immunity, Innate , Receptors, Pattern Recognition/immunology
18.
Zoology (Jena) ; 114(4): 191-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21723107

ABSTRACT

The light-organ symbiosis of Euprymna scolopes, the Hawaiian bobtail squid, is a useful model for the study of animal-microbe interactions. Recent analyses have demonstrated that chitin breakdown products play a role in communication between E. scolopes and its bacterial symbiont Vibrio fischeri. In this study, we sought to determine the source of chitin in the symbiotic organ. We used a commercially available chitin-binding protein (CBP) conjugated to fluorescein to label the polymeric chitin in host tissues. Confocal microscopy revealed that the only cells in contact with the symbionts that labeled with the probe were the macrophage-like hemocytes, which traffic into the light-organ crypts where the bacteria reside. Labeling of extracted hemocytes by CBP was markedly decreased following treatment with purified chitinase, providing further evidence that the labeled molecule is polymeric chitin. Further, CBP-positive areas co-localized with both a halide peroxidase antibody and Lysotracker, a lysosomal marker, suggesting that the chitin-like biomolecule occurs in the lysosome or acidic vacuoles. Reverse transcriptase polymerase chain reaction (PCR) of hemocytes revealed mRNA coding for a chitin synthase, suggesting that the hemocytes synthesize chitin de novo. Finally, upon surveying blood cells from other invertebrate species, we observed CBP-positive regions in all granular blood cells examined, suggesting that this feature is a shared character among the invertebrates; the vertebrate blood cells that we sampled did not label with CBP. Although the function of the chitin-like material remains undetermined, its presence and subcellular location in invertebrate hemocytes suggests a conserved role for this polysaccharide in the immune system of diverse animals.


Subject(s)
Chitin/biosynthesis , Decapodiformes/chemistry , Hemocytes/chemistry , Animals , Chitin Synthase/metabolism , RNA, Messenger/metabolism , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...