Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pflugers Arch ; 457(2): 253-70, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18600344

ABSTRACT

The recently described exchange protein directly activated by cAMP (Epac) has been implicated in distinct protein kinase A-independent cellular signalling pathways. We investigated the role of Epac activation in adrenergically mediated ventricular arrhythmogenesis. In contrast to observations in control conditions (n = 20), monophasic action potentials recorded in 2 of 10 intrinsically beating and 5 of 20 extrinsically paced Langendorff-perfused wild-type murine hearts perfused with the Epac activator 8-pCPT-2'-O-Me-cAMP (8-CPT, 1 microM) showed spontaneous triggered activity. Three of 20 such extrinsically paced hearts showed spontaneous ventricular tachycardia (VT). Programmed electrical stimulation provoked VT in 10 of 20 similarly treated hearts (P < 0.001; n = 20). However, there were no statistically significant accompanying changes (P > 0.05) in left ventricular epicardial (40.7 +/- 1.2 versus 44.0 +/- 1.7 ms; n = 10) or endocardial action potential durations (APD(90); 51.8 +/- 2.3 versus 51.9 +/- 2.2 ms; n = 10), transmural (DeltaAPD(90)) (11.1 +/- 2.6 versus 7.9 +/- 2.8 ms; n = 10) or apico-basal repolarisation gradients, ventricular effective refractory periods (29.1 +/- 1.7 versus 31.2 +/- 2.4 ms in control and 8-CPT-treated hearts, respectively; n = 10) and APD(90) restitution characteristics. Nevertheless, fluorescence imaging of cytosolic Ca(2+) levels demonstrated abnormal Ca(2+) homeostasis in paced and resting isolated ventricular myocytes. Epac activation using isoproterenol in the presence of H-89 was also arrhythmogenic and similarly altered cellular Ca(2+) homeostasis. Epac-dependent effects were reduced by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibition with 1 microM KN-93. These findings associate VT in an intact cardiac preparation with altered cellular Ca(2+) homeostasis and Epac activation for the first time, in the absence of altered repolarisation gradients previously implicated in reentrant arrhythmias through a mechanism dependent on CaMKII activity.


Subject(s)
Calcium Signaling , Guanine Nucleotide Exchange Factors/metabolism , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Tachycardia, Ventricular/metabolism , Action Potentials , Adrenergic beta-Agonists/pharmacology , Animals , Benzylamines/pharmacology , Calcium Signaling/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiac Pacing, Artificial , Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Female , Guanine Nucleotide Exchange Factors/agonists , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Homeostasis , In Vitro Techniques , Isoproterenol/pharmacology , Isoquinolines/pharmacology , Male , Mice , Models, Cardiovascular , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Perfusion , Protein Kinase Inhibitors/pharmacology , Refractory Period, Electrophysiological , Sulfonamides/pharmacology , Tachycardia, Ventricular/physiopathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...