Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 615(7954): 858-865, 2023 03.
Article in English | MEDLINE | ID: mdl-36949201

ABSTRACT

Human society is dependent on nature1,2, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations3. Knowledge of species fluctuations is particularly inadequate in the marine realm4. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fishes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves5,6, species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species' population trends7,8.


Subject(s)
Anthozoa , Coral Reefs , Extreme Heat , Fishes , Global Warming , Invertebrates , Oceans and Seas , Seawater , Seaweed , Animals , Australia , Fishes/classification , Invertebrates/classification , Global Warming/statistics & numerical data , Seaweed/classification , Population Dynamics , Population Density , Seawater/analysis , Extinction, Biological , Conservation of Natural Resources/trends , Echinodermata/classification
2.
Ecol Evol ; 12(4): e8789, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35414896

ABSTRACT

Climate change and fisheries exploitation are dramatically changing the abundances, species composition, and size spectra of fish communities. We explore whether variation in 'abundance size spectra', a widely studied ecosystem feature, is influenced by a parameter theorized to govern the shape of size-structured ecosystems-the relationship between the sizes of predators and their prey (predator-prey mass ratios, or PPMRs). PPMR estimates are lacking for avast number of fish species, including at the scale of trophic guilds. Using measurements of 8128 prey items in gut contents of 97 reef fish species, we established predator-prey mass ratios (PPMRs) for four major trophic guilds (piscivores, invertivores, planktivores, and herbivores) using linear mixed effects models. To assess the theoretical predictions that higher community-level PPMRs leads to shallower size spectrum slopes, we compared observations of both ecosystem metrics for ~15,000 coastal reef sites distributed around Australia. PPMRs of individual fishes were remarkably high (median ~71,000), with significant variation between different trophic guilds (~890 for piscivores; ~83,000 for planktivores), and ~8700 for whole communities. Community-level PPMRs were positively related to size spectrum slopes, broadly consistent with theory, however, this pattern was also influenced by the latitudinal temperature gradient. Tropical reefs showed a stronger relationship between community-level PPMRs and community size spectrum slopes than temperate reefs. The extent that these patterns apply outside Australia and consequences for community structure and dynamics are key areas for future investigation.

3.
Data Brief ; 41: 107990, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35252503

ABSTRACT

Many inland ecosystems (lakes, rivers, reservoirs, lagoons) around the world undergo regular biological monitoring surveys, including monitoring the abundance, biomass and size structure of fish communities. Yet, the majority of fish monitoring datasets for inland ecosystems remain inaccessible. This is especially true for historical datasets from the early and middle 20th century, despite their immense importance for establishing baselines of ecosystem status (e.g., prior to manifestations of climate change and intensive fisheries impacts), assessing the current status of fish stocks, and more generally determining temporal changes in fish populations. Here we present a newly digitized fish monitoring dataset for two major Lithuanian inland ecosystems - Curonian Lagoon and Kaunas Water Reservoir. The data comprises >60000 records from >800 fish surveys conducted during 1950s to 1980s, using a range of fishing gears and sampling methods. We introduce three different definitions for survey methods to describe the level of detail for each fish community study. Method 1 surveys include individual fish sizes and weights, Method 2 surveys record frequencies of fish in length or weight groups, whereas Method 3 only records the total catch biomass of a given species. The majority of historical and currently collected fish survey data can be attributed to one of these three methods and we present R codes to convert data from higher resolution methods into aggregated data formats, to facilitate data sharing. In addition, commercial fisheries catch data for years that were surveyed are also provided. The data presented here can facilitate ecological and fisheries analyses of baseline ecosystem status before the onsets of rapid warming and eutrophication, exploration of fish size structure, evaluation of different catch per unit effort standardization methods, and assessment of population responses to commercial fishing.

4.
Ecol Lett ; 24(10): 2146-2154, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34291561

ABSTRACT

Among the more widely accepted general hypotheses in ecology is that community relationships between abundance and body size follow a log-linear size spectrum, from the smallest consumers to the largest predators (i.e. 'bacteria to whales'). Nevertheless, most studies only investigate small subsets of this spectrum, and note that extreme size classes in survey data deviate from linear expectations. In this study, we fit size spectra to field data from 45 rocky and coral reef sites along a 28° latitudinal gradient, comprising individuals from 0.125 mm to 2 m in body size. We found that 96% of the variation in abundance along this 'extended' size gradient was described by a single linear function across all sites. However, consistent 'wobbles' were also observed, with subtle peaks and troughs in abundance along the spectrum, which varied with sea temperature, as predicted by theory relating to trophic cascades.


Subject(s)
Copepoda , Sharks , Animals , Body Size , Coral Reefs , Ecology
5.
Ecol Lett ; 24(3): 572-579, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33331673

ABSTRACT

The frequency distribution of individual body sizes in animal communities (i.e. the size spectrum) provides powerful insights for understanding the energy flux through food webs. However, studies of size spectra in rocky and coral reef communities typically focus only on fishes or invertebrates due to taxonomic and data constraints, and consequently ignore energy pathways involving the full range of macroscopic consumer taxa. We analyse size spectra with co-located fish and mobile macroinvertebrate data from 3369 reef sites worldwide, specifically focusing on how the addition of invertebrate data alters patterns. The inclusion of invertebrates steepens the size spectrum, more so in temperate regions, resulting in a consistent size spectrum slope across latitudes, and bringing slopes closer to theoretical expectations based on energy flow through the system. These results highlight the importance of understanding contributions of both invertebrates and fishes to reef food webs worldwide.


Subject(s)
Coral Reefs , Fishes , Animals , Body Size , Food Chain , Invertebrates
SELECTION OF CITATIONS
SEARCH DETAIL
...