Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(4): e0154444, 2016.
Article in English | MEDLINE | ID: mdl-27120201

ABSTRACT

The possibility of increased invasiveness in cultivated varieties of native perennial species is a question of interest in biofuel risk assessment. Competitive success is a key factor in the fitness and invasive potential of perennial plants, and thus the large-scale release of high-yielding biomass cultivars warrants empirical comparisons with local conspecifics in the presence of competitors. We evaluated the performance of non-local cultivars and local wild biotypes of the tallgrass species Panicum virgatum L. (switchgrass) in competition experiments during two growing seasons in Ohio and Iowa. At each location, we measured growth and reproductive traits (plant height, tiller number, flowering time, aboveground biomass, and seed production) of four non-locally sourced cultivars and two locally collected wild biotypes. Plants were grown in common garden experiments under three types of competition, referred to as none, moderate (with Schizachyrium scoparium), and high (with Bromus inermis). In both states, the two "lowland" cultivars grew taller, flowered later, and produced between 2x and 7.5x more biomass and between 3x and 34x more seeds per plant than local wild biotypes, while the other two cultivars were comparable to wild biotypes in these traits. Competition did not affect relative differences among biotypes, with the exception of shoot number, which was more similar among biotypes under high competition. Insights into functional differences between cultivars and wild biotypes are crucial for developing biomass crops while mitigating the potential for invasiveness. Here, two of the four cultivars generally performed better than wild biotypes, indicating that these biotypes may pose more of a risk in terms of their ability to establish vigorous feral populations in new regions outside of their area of origin. Our results support an ongoing assessment of switchgrass cultivars developed for large-scale planting for biofuels.


Subject(s)
Introduced Species , Panicum/growth & development , Plant Dispersal/physiology , Seeds/growth & development , Andropogon/growth & development , Biofuels/supply & distribution , Bromus/growth & development , Conservation of Natural Resources , Iowa , Ohio , Plant Breeding , Plant Dispersal/ethics , Plant Shoots/growth & development , Seasons
2.
Plant Cell Environ ; 32(11): 1525-37, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19558624

ABSTRACT

C(4) perennial grasses are being considered for bioenergy because of their high productivity and low inputs. In side-by-side replicated trials, Miscanthus (Miscanthus x giganteus) has previously been found more than twice as productive as switchgrass (Panicum virgatum). The hypothesis that this difference is attributable to higher leaf photosynthetic rates was tested on established plots of switchgrass and Miscanthus in central Illinois with >3300 individual measurements on 20 dates across the 2005 and 2006 growing seasons. Seasonally integrated leaf-level photosynthesis was 33% higher in Miscanthus than switchgrass (P < 0.0001). This increase in carbon assimilation comes at the expense of additional transpiration since stomatal conductance was on average 25% higher in Miscanthus (P < 0.0001). Whole-chain electron transport rate, measured simultaneously by modulated chlorophyll fluorescence, was similarly 23% higher in Miscanthus (P < 0.0001). Efficiencies of light energy transduction into whole chain photosynthetic electron transport, leaf nitrogen use and leaf water use were all significantly higher in Miscanthus. These may all contribute to its higher photosynthetic rates, and in turn, productivity. Systematic measurement of photosynthesis over two complete growing seasons in the field provides a unique dataset explaining why the productivity of these two species differs and for validating mechanistic production models for these emerging bioenergy crops.


Subject(s)
Light , Photosynthesis , Plant Leaves/metabolism , Poaceae/metabolism , Biofuels , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Electron Transport , Fluorescence , Nitrogen/analysis , Photosystem II Protein Complex , Plant Leaves/radiation effects , Plant Stomata/metabolism , Poaceae/radiation effects , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...