Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-497047

ABSTRACT

The global evolution of SARS-CoV-2 depends in part upon the evolutionary dynamics within individual hosts with varying immune histories. To characterize the within-host evolution of acute SARS-CoV-2 infection, we deep sequenced saliva and nasal samples collected daily from immune and unvaccinated individuals early during infection. We show that longitudinal sampling facilitates high-confidence genetic variant detection and reveals evolutionary dynamics missed by less-frequent sampling strategies. Within-host dynamics in both naive and immune individuals appeared largely stochastic; however, we identified clear mutational hotspots within the viral genome, consistent with selection and differing between naive and immune individuals. In rare cases, minor genetic variants emerged to frequencies sufficient for forward transmission. Finally, we detected significant genetic compartmentalization of virus between saliva and nasal swab sample sites in many individuals. Altogether, these data provide a high-resolution profile of within-host SARS-CoV-2 evolutionary dynamics.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22275210

ABSTRACT

BackgroundIncreased reinfection rates with SARS-CoV-2 have recently been reported, with some locations basing reinfection on a second positive PCR test at least 90 days after initial infection. MethodsWe identified cases where patients had two positive tests for SARS-CoV-2 and evaluated which of these had been sequenced as part of our surveillance efforts, and evaluated sequencing and clinical data. Results750 patients (920 samples) had a positive test at least 90 days after the initial test. The median time between tests was 377 days, and 724 (79%) of the post 90-day positives were collected after the emergence of the Omicron variant in November 2021. Sequencing was attempted on 231 samples and successful in 127. Successful sequencing spiked during the Omicron surge and showed higher median days from initial infection compared to failed sequences (median 398 days compared to 276 days, p<0.0005). A total of 122 (98%) patients showed evidence of reinfection, 45 of which had sequence proven reinfection and 77 had inferred reinfections (later sequence showed a clade that was not circulating when the patient was initially infected). Children accounted for only 4% of reinfections. 43 (96%) of 45 infections with sequence proven reinfection were caused by the Omicron variant, 41 (91%) were symptomatic, 32 (71%), were vaccinated prior to the second infection, and 6 (13%) were Immunosuppressed. Only 2 (4%) were hospitalized, and both had underlying conditions. ConclusionSequence proven reinfections increased with the Omicron variant but generally caused mild infections.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22271199

ABSTRACT

Control of SARS-CoV-2 (SCV-2) transmission is a major priority that requires understanding SCV-2 replication dynamics. We developed and validated novel droplet digital PCR (ddPCR) assays to quantify SCV-2 subgenomic RNAs (sgRNAs), which are only produced during active viral replication, and discriminate them from full-length genomic RNAs (gRNAs) in a multiplexed format. We applied this multiplex ddPCR assay to 144 cross-sectional nasopharyngeal samples. sgRNAs were quantifiable across a range of qPCR cycle threshold (Ct) values and correlated with Ct values. The ratio of sgRNA:gRNA was remarkably stable across a wide range of Ct values, whereas adjusted amounts of N sgRNA to a human housekeeping gene declined with higher Ct values. Interestingly, adjusted sgRNA and gRNA amounts were quantifiable in culture-negative samples, although levels were significantly lower than in culture-positive samples. Longitudinal daily testing of 6 persons for up to 14 days revealed that sgRNA is concordant with culture results during the first week of infection but may be discordant with culture later in infection. Further, sgRNA:gRNA is constant during infection despite changes in viral culture. These data indicate stable viral transcription during infection. More work is needed to understand why cultures are negative despite persistence of viral RNAs.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22270337

ABSTRACT

BackgroundPrior observation has shown differences in COVID-19 hospitalization rates between SARS-CoV-2 variants, but limited information describes differences in hospitalization outcomes. MethodsPatients admitted to 5 hospitals with COVID-19 were included if they had hypoxia, tachypnea, tachycardia, or fever, and data to describe SARS-CoV-2 variant, either from whole genome sequencing, or inference when local surveillance showed [≥]95% dominance of a single variant. The average effect of SARS-CoV-2 variant on 14-day risk of severe disease, defined by need for advanced respiratory support, or death was evaluated using models weighted on propensity scores derived from baseline clinical features. ResultsSevere disease or death within 14 days occurred for 950 of 3,365 (28%) unvaccinated patients and 178 of 808 (22%) patients with history of vaccination or prior COVID-19. Among unvaccinated patients, the relative risk of 14-day severe disease or death for Delta variant compared to ancestral lineages was 1.34 (95% confidence interval [CI] 1.13-1.55). Compared to Delta variant, this risk for Omicron patients was 0.78 (95% CI 0.62-0.97) and compared to ancestral lineages was 1.04 (95% CI 0.84-1.24). Among Omicron and Delta infections, patients with history of vaccination or prior COVID-19 had one-half the 14-day risk of severe disease or death (adjusted hazard ratio 0.46, IQR 0.34-0.62) but no significant outcome difference between Delta and Omicron infections. ConclusionsAlthough the risk of severe disease or death for unvaccinated patients with Omicron was lower than Delta, it was similar to ancestral lineages. Severe outcomes were less common in vaccinated patients, but there was no difference between Delta and Omicron infections.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21262077

ABSTRACT

BackgroundThe emerging SARS-CoV-2 variant of concern (VOC) B.1.6.17.2 (Delta) quickly displaced the B.1.1.7 (Alpha) and is associated with increases in COVID-19 cases nationally. The Delta variant has been associated with greater transmissibility and higher viral RNA loads in both unvaccinated and fully vaccinated individuals. Data is lacking regarding the infectious virus load in Delta infected individuals and how that compares to individuals infected with other SARS-CoV-2 lineages. MethodsWhole genome sequencing of 2,785 clinical isolates was used to characterize the prevalence of SARS-CoV-2 lineages circulating in the National Capital Region between January and July 2021. Clinical chart reviews were performed for the Delta, Alpha, and B.1.2 (a control predominant lineage prior to both VOCs) variants to evaluate disease severity and outcome and Cycle threshold values (Cts) were compared. The presence of infectious virus was determined using Vero-TMPRSS2 cells and anti-SARS-CoV-2 IgG levels were determined from upper respiratory specimen. An analysis of infection in unvaccinated and fully vaccinated populations was performed. ResultsThe Delta variant displaced the Alpha variant to constitute 88.2% of the circulating lineages in the National Capital Region by July, 2021. The Delta variant associated with increased breakthrough infections in fully vaccinated individuals that were mostly symptomatic when compared to the Alpha breakthrough infections, though it is important to note there was a significantly longer period of time between vaccination and infection with Delta infections. The recovery of infectious virus on cell culture was significantly higher with the Delta variant compared to Alpha in both vaccinated and unvaccinated groups. The impact of vaccination on reducing the recovery of infectious virus from clinical samples was only observed with Alpha variant infections but was strongly associated with low localized SARS-CoV-2 IgG for both variants. A comparison of Ct values showed a significant decrease in the Delta compared to Alpha with no significant differences between unvaccinated and vaccinated groups. ConclusionsOur data indicate that the Delta variant is associated with increased infectious virus loads when compared to the Alpha variant and decreased upper respiratory antiviral IgG levels. Measures to reduce transmission in addition to increasing vaccinations rates have to be implemented to reduce Delta variant spread. FundingNIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061.

6.
Diana Rose E Ranoa; Robin L Holland; Fadi G Alnaji; Kelsie J Green; Leyi Wang; Richard L Fredrickson; Tong Wang; George N Wong; Johnny Uelmen; Sergei Maslov; Ahmed Elbanna; Zachary J Weiner; Alexei V Tkachenko; Hantao Zhang; Zhiru Liu; Sanjay J Patel; John M Paul; Nickolas P Vance; Joseph G Gulick; Sandeep P Satheesan; Isaac J Galvan; Andrew Miller; Joseph Grohens; Todd J Nelson; Mary P Stevens; P. Mark Hennessy; Robert C Parker; Edward Santos; Charles Brackett; Julie D Steinman; Melvin R Fenner Jr.; Kristin Dohrer; Kraig Wagenecht; Michael DeLorenzo; Laura Wilhelm-Barr; Brian R Brauer; Catherine Best-Popescu; Gary Durack; Nathan Wetter; David M Kranz; Jessica Breitbarth; Charlie Simpson; Julie A Pryde; Robin N Kaler; Chris Harris; Allison C Vance; Jodi L Silotto; Mark Johnson; Enrique Valera; Patricia K Anton; Lowa Mwilambwe; Stephen B Bryan; Deborah S Stone; Danita B Young; Wanda E Ward; John Lantz; John A Vozenilek; Rashid Bashir; Jeffrey S Moore; Mayank Garg; Julian C Cooper; Gillian Snyder; Michelle H Lore; Dustin L Yocum; Neal J Cohen; Jan E Novakofski; Melanie J Loots; Randy L Ballard; Mark Band; Kayla M Banks; Joseph D Barnes; Iuliana Bentea; Jessica Black; Jeremy Busch; Hannah Christensen; Abigail Conte; Madison Conte; Michael Curry; Jennifer Eardley; April Edwards; Therese Eggett; Judes Fleurimont; Delaney Foster; Bruce W Fouke; Nicholas Gallagher; Nicole Gastala; Scott A Genung; Declan Glueck; Brittani Gray; Andrew Greta; Robert M Healy; Ashley Hetrick; Arianna A Holterman; Nahed Ismail; Ian Jasenof; Patrick Kelly; Aaron Kielbasa; Teresa Kiesel; Lorenzo M Kindle; Rhonda L Lipking; Yukari C Manabe; Jade ? Mayes; Reubin McGuffin; Kenton G McHenry; Agha Mirza; Jada Moseley; Heba H Mostafa; Melody Mumford; Kathleen Munoz; Arika D Murray; Moira Nolan; Nil A Parikh; Andrew Pekosz; Janna Pflugmacher; Janise M Phillips; Collin Pitts; Mark C Potter; James Quisenberry; Janelle Rear; Matthew L Robinson; Edith Rosillo; Leslie N Rye; MaryEllen Sherwood; Anna Simon; Jamie M Singson; Carly Skadden; Tina H Skelton; Charlie Smith; Mary Stech; Ryan Thomas; Matthew A Tomaszewski; Erika A Tyburski; Scott Vanwingerden; Evette Vlach; Ronald S Watkins; Karriem Watson; Karen C White; Timothy L Killeen; Robert J Jones; Andreas C Cangellaris; Susan A Martinis; Awais Vaid; Christopher B Brooke; Joseph T Walsh; William C Sullivan; Rebecca L Smith; Nigel D Goldenfeld; Timothy M Fan; Paul J Hergenrother; Martin D Burke.
Preprint in English | medRxiv | ID: ppmedrxiv-21261548

ABSTRACT

In the Fall of 2020, many universities saw extensive transmission of SARS-CoV-2 among their populations, threatening the health of students, faculty and staff, the viability of in-person instruction, and the health of surrounding communities.1, 2 Here we report that a multimodal "SHIELD: Target, Test, and Tell" program mitigated the spread of SARS-CoV-2 at a large public university, prevented community transmission, and allowed continuation of in-person classes amidst the pandemic. The program combines epidemiological modelling and surveillance (Target); fast and frequent testing using a novel and FDA Emergency Use Authorized low-cost and scalable saliva-based RT-qPCR assay for SARS-CoV-2 that bypasses RNA extraction, called covidSHIELD (Test); and digital tools that communicate test results, notify of potential exposures, and promote compliance with public health mandates (Tell). These elements were combined with masks, social distancing, and robust education efforts. In Fall 2020, we performed more than 1,000,000 covidSHIELD tests while keeping classrooms, laboratories, and many other university activities open. Generally, our case positivity rates remained less than 0.5%, we prevented transmission from our students to our faculty and staff, and data indicate that we had no spread in our classrooms or research laboratories. During this fall semester, we had zero COVID-19-related hospitalizations or deaths amongst our university community. We also prevented transmission from our university community to the surrounding Champaign County community. Our experience demonstrates that multimodal transmission mitigation programs can enable university communities to achieve such outcomes until widespread vaccination against COVID-19 is achieved, and provides a roadmap for how future pandemics can be addressed.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21261006

ABSTRACT

BackgroundThe E484K and L452R amino acid substitutions on the spike protein of SARS-CoV-2 are associated with reduced neutralization by antibodies from acquired immunity. This study examines the respective association of these mutations with infection in persons who had previously received a COVID-19 vaccine. MethodsGenetic sequences from SARS-CoV-2 specimens collected from Maryland residents and reported to Maryland Department of Health were linked to vaccination history. The prevalence of infections in fully vaccinated persons -- defined as being at least two weeks past receiving the final scheduled dose of a COVID-19 vaccine series -- was compared between infections caused by viruses carrying E484K to those not carrying E484K, and between infections caused by viruses carrying L452R to those not carrying L452R, using logistic regression to adjust for confounding. ResultsOf 9,048 sequenced SARS-CoV-2 specimens examined, 265 (2.9%) were collected from fully vaccinated persons. In adjusted analysis, the E484K substitution was associated with an increase in the odds of the sequenced specimen being collected from a fully vaccinated person (OR 1.96, 95% CI, 1.36 to 2.83). The L452R mutation was not significantly associated with infections in vaccinated persons (OR 1.07, 95% CI, 0.69 to 1.68). ConclusionThough more than 97% of SARS-CoV-2 infections were in persons who were not fully vaccinated, the E484K mutation was associated with increased odds of SARS-CoV-2 infection in vaccinated persons. Linking vaccination and sequencing data can help identify and estimate the impact SARS-CoV-2 mutations may have on vaccine effectiveness. SummaryIn viruses sequenced for Marylands routine SARS-CoV-2 genomic surveillance, the spike protein amino acid substitution E484K was more prevalent in viruses that infected vaccinated people than in viruses that infected people who were not vaccinated.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21260208

ABSTRACT

The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimate viral reproduction and clearance rates, and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to superspreading. Viral genome load often peaked days earlier in saliva than in nasal swabs, indicating strong compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of B.1.1.7 and non-B.1.1.7 viruses in nasal swabs were indistinguishable, however B.1.1.7 exhibited a significantly slower pre-peak growth rate in saliva. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-21259105

ABSTRACT

IntroductionCOVID-19 large scale immunization in the US has been associated with infrequent breakthrough positive molecular testing. Whether a positive test is associated with a high viral RNA load, specific viral variant, recovery of infectious virus, or symptomatic infection is largely not known. MethodsIn this study, we identified 133 SARS-CoV-2 positive patients who had received two doses of either Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) vaccines, the 2nd of which was received between January and April of 2021. The positive samples were collected between January and May of 2021 with a time that extended from 2 to 100 days after the second dose. Samples were sequenced to characterize the whole genome and Spike protein changes and cycle thresholds that reflect viral loads were determined using a single molecular assay. Local SARS-CoV-2 IgG antibodies were examined using ELISA and specimens were grown on cell culture to assess the recovery of infectious virus as compared to a control unvaccinated cohort from a matched time frame. ResultsOf 133 specimens, 24 failed sequencing and yielded a negative or very low viral load on the repeat PCR. Of 109 specimens that were used for further genome analysis, 68 (62.4%) were from symptomatic infections, 11 (10.1%) were admitted for COVID-19, and 2 (1.8%) required ICU admission with no associated mortality. The predominant virus variant was the alpha (B.1.1.7), however a significant association between lineage B.1.526 and amino acid change S: E484K with positives after vaccination was noted when genomes were compared to a large control cohort from a matched time frame. A significant reduction of the recovery of infectious virus on cell culture as well as delayed time to the first appearance of cytopathic effect was accompanied by an increase in local IgG levels in respiratory samples of vaccinated individuals but upper respiratory tract IgG levels were not different between symptomatic or asymptomatic infections. ConclusionsVaccination reduces the recovery of infectious virus in breakthrough infections accompanied by an increase in upper respiratory tract local immune responses. FundingNational Institute of Health (The Johns Hopkins Center of Excellence in Influenza Research and Surveillance, HHSN272201400007C), Johns Hopkins University, Maryland Department of Health, Centers for Disease Control and Prevention.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-21256995

ABSTRACT

The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses in the fight to end the pandemic. Widespread detection of variant strains will be critical to inform policy decisions to mitigate further spread, and post-pandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, we have developed a portable, magnetofluidic cartridge platform for automated PCR testing in <30 min. Cartridges were designed for multiplexed detection of SARS-CoV-2 with either distinctive variant mutations or with Influenza A and B. The platform demonstrated a limit of detection down to 2 copies/{micro}L SARS-CoV-2 RNA with successful identification of B.1.1.7 and B.1.351 variants. The multiplexed SARS-CoV-2/Flu assay was validated using archived clinical nasopharyngeal swab eluates (n = 116) with an overall sensitivity/specificity of 98.1%/95.2%, 85.7%/100%, 100%/98.2%, respectively, for SARS-CoV-2, Influenza A, and Influenza B. Further testing with saliva (n = 14) demonstrated successful detection of all SARS-CoV-2 positive samples with no false-positives.

11.
Preprint in English | medRxiv | ID: ppmedrxiv-21253964

ABSTRACT

What is already known about this topic?Diagnostic tests and sample types for SARS-CoV-2 vary in sensitivity across the infection period. What is added by this report?We show that both RTqPCR (from nasal swab and saliva) and the Quidel SARS Sofia FIA rapid antigen tests peak in sensitivity during the period in which live virus can be detected in nasal swabs, but that the sensitivity of RTqPCR tests rises more rapidly in the pre-infectious period. We also use empirical data to estimate the sensitivities of RTqPCR and antigen tests as a function of testing frequency. What are the implications for public health practice?RTqPCR tests will be more effective than rapid antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (provided results reporting is timely). All modalities, including rapid antigen tests, showed >94% sensitivity to detect infection if used at least twice per week. Regular surveillance/screening using rapid antigen tests 2-3 times per week can be an effective strategy to achieve high sensitivity (>95%) for identifying infected individuals.

12.
Preprint in English | medRxiv | ID: ppmedrxiv-21252420

ABSTRACT

BackgroundSustained molecular detection of SARS-CoV-2 RNA in the upper respiratory tract (URT) in mild to moderate COVID-19 is common. We sought to identify host and immune determinants of prolonged SARS-CoV-2 RNA detection. MethodsNinety-five outpatients self-collected mid-turbinate nasal, oropharyngeal (OP), and gingival crevicular fluid (oral fluid) samples at home and in a research clinic a median of 6 times over 1-3 months. Samples were tested for viral RNA, virus culture, and SARS-CoV-2 and other human coronavirus antibodies, and associations were estimated using Cox proportional hazards models. ResultsViral RNA clearance, as measured by SARS-CoV-2 RT-PCR, in 507 URT samples occurred a median (IQR) 33.5 (17-63.5) days post-symptom onset. Sixteen nasal-OP samples collected 2-11 days post-symptom onset were virus culture positive out of 183 RT-PCR positive samples tested. All participants but one with positive virus culture were negative for concomitant oral fluid anti-SARS-CoV-2 antibodies. The mean time to first antibody detection in oral fluid was 8-13 days post-symptom onset. A longer time to first detection of oral fluid anti-SARS-CoV-2 S antibodies (aHR 0.96, 95% CI 0.92-0.99, p=0.020) and BMI [≥] 25kg/m2 (aHR 0.37, 95% CI 0.18-0.78, p=0.009) were independently associated with a longer time to SARS-CoV-2 viral RNA clearance. Fever as one of first three COVID-19 symptoms correlated with shorter time to viral RNA clearance (aHR 2.06, 95% CI 1.02-4.18, p=0.044). ConclusionsWe demonstrate that delayed rise of oral fluid SARS-CoV-2-specific antibodies, elevated BMI, and absence of early fever are independently associated with delayed URT viral RNA clearance.

13.
Preprint in English | medRxiv | ID: ppmedrxiv-20248878

ABSTRACT

The worldwide COVID-19 pandemic has had devastating effects on health, healthcare infrastructure, social structure, and economics. One of the limiting factors in containing the spread of this virus has been the lack of widespread availability of fast, inexpensive, and reliable methods for testing of individuals. Frequent screening for infected and often asymptomatic people is a cornerstone of pandemic management plans. Here, we introduce two pH sensitive LAMPshade dyes as novel readouts in an isothermal RT-LAMP amplification assay for SARS-CoV-2 RNA. The resulting JaneliaLAMP (jLAMP) assay is robust, simple, inexpensive, has low technical requirements and we describe its use and performance in direct testing of contrived and clinical samples without RNA extraction.

14.
Preprint in English | medRxiv | ID: ppmedrxiv-20174136

ABSTRACT

BackgroundThe early COVID-19 pandemic has been characterized by rapid global spread. In the United States National Capital Region, over 2,000 cases were reported within three weeks of its first detection in March 2020. We aimed to use genomic sequencing to understand the initial spread of SARS-CoV-2, the virus that causes COVID-19, in the region. By correlating genetic information to disease phenotype, we also aimed to gain insight into any correlation between viral genotype and case severity or transmissibility. MethodsWe performed whole genome sequencing of clinical SARS-CoV-2 samples collected in March 2020 by the Johns Hopkins Health System. We analyzed these regional SARS-CoV-2 genomes alongside detailed clinical metadata and the global phylogeny to understand early establishment of the virus within the region. ResultsWe analyzed 620 samples from the Johns Hopkins Health System collected between March 11-31, 2020, comprising 37.3% of the total cases in Maryland during this period. We selected 143 of these samples for sequencing, generating 114 complete viral genomes. These genomes belong to all five major Nextstrain-defined clades, suggesting multiple introductions into the region and underscoring the diversity of the regional epidemic. We also found that clinically severe cases had genomes belonging to all of these clades. ConclusionsWe established a pipeline for SARS-CoV-2 sequencing within the Johns Hopkins Health system, which enabled us to capture the significant viral diversity present in the region as early as March 2020. Efforts to control local spread of the virus were likely confounded by the number of introductions into the region early in the epidemic and interconnectedness of the region as a whole.

15.
Preprint in English | medRxiv | ID: ppmedrxiv-20168963

ABSTRACT

Repeat molecular testing for SARS-CoV-2 may result in scenarios including multiple positive results, positive test results after negative tests, and repeated false negative results in symptomatic individuals. Consecutively collected specimens from a retrospective cohort of COVID-19 patients at the Johns Hopkins Hospital were assessed for RNA and infectious virus shedding. Whole genome sequencing confirmed the virus genotype in patients with prolonged viral RNA shedding and droplet digital PCR (ddPCR) was used to assess the rate of false negative standard of care PCR results. Recovery of infectious virus was associated with Ct values of 18.8 {+/-} 3.4. Prolonged viral RNA shedding was associated with recovery of infectious virus in specimens collected up to 20 days after the first positive result in patients who were symptomatic at the time of specimen collection. The use of Ct values and clinical symptoms provides a more accurate assessment of the potential for infectious virus shedding.

16.
Preprint in English | bioRxiv | ID: ppbiorxiv-094490

ABSTRACT

The COVID-19 pandemic has brought the world to a halt, with cases observed around the globe causing significant mortality. There is an urgent need for serological tests to detect antibodies against SARS-CoV-2, which could be used to assess the prevalence of infection, as well as ascertain individuals who may be protected from future infection. Current serological tests developed for SARS-CoV-2 rely on traditional technologies such as enzyme-linked immunosorbent assays (ELISA) and lateral flow assays, which may lack scalability to meet the demand of hundreds of millions of antibody tests in the coming year. Herein, we present an alternative method of antibody testing that just depends on one protein reagent being added to patient serum/plasma or whole blood and a short five-minute assay time. A novel fusion protein was designed that binds red blood cells (RBC) via a single-chain variable fragment (scFv) against the H antigen and displays the receptor-binding domain (RBD) of SARS-CoV-2 spike protein on the surface of RBCs. Upon mixing of the fusion protein, RBD-scFv with recovered COVID-19 patient serum and RBCs, we observed agglutination of RBCs, indicating the patient developed antibodies against SARS-CoV-2 RBD. Given that the test uses methods routinely used in hospital clinical labs across the world, we anticipate the test can be rapidly deployed with only the protein reagent required at projected manufacturing cost at U.S. cents per test. We anticipate our agglutination assay may find extensive use in low-resource settings for detecting SARS-CoV-2 antibodies.Competing Interest StatementR.L.K. is an inventor on a provisional patent application related to the work described in the manuscript. All other authors have no competing interests.View Full Text

SELECTION OF CITATIONS
SEARCH DETAIL
...