Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 70(3): 117-38, 1999 Dec 31.
Article in English | MEDLINE | ID: mdl-10631352

ABSTRACT

In this research, we investigated the use of an inexpensive thermally regenerated activated carbon as a pre-adsorbent in the solidification/stabilization of phenol-contaminated sand. Our results show that even the addition of very low amounts of regenerated activated carbon (1%-2% w/w sand) resulted in the rapid adsorption of phenol in the Chemical solidification/stabilization (S/S) matrix, with phenol leaching reduced by as much as 600%. Adsorption studies indicated that the adsorption of phenol on the reactivated carbon was found to be partially irreversible over time in the S/S waste form, indicating possible chemical adsorption. Pore-fluid analyses of the cement paste containing phenol suggested the formation of a calcium-phenol complex, which further reduced the amount of free phenol present in the pores. Studies using several micro-structural techniques, including field emission scanning electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy, indicated significant morphological changes in the cement matrix upon the addition of phenol and reactivated carbon. The hydration of cement in the presence of phenol was retarded concomitant with formation of amorphous portlandite.


Subject(s)
Charcoal/chemistry , Hazardous Waste , Phenol/pharmacokinetics , Adsorption , Refuse Disposal , Soil Pollutants/pharmacokinetics
2.
J Hazard Mater ; 70(3): 139-56, 1999 Dec 31.
Article in English | MEDLINE | ID: mdl-10631353

ABSTRACT

The use of regenerated activated carbon as an immobilizing additive for phenol in solidification/stabilization (S/S) processes was investigated. The adsorption capacity of regenerated carbon was compared to that of the virgin form and was found to be very close. The effects of pH and Ca(OH)(2) concentration within the S/S monolith on the adsorption process were also examined. Kinetic tests were performed to evaluate the adsorption of phenol on different forms of F400 carbon, including the regenerated form. Kinetic tests were performed in aqueous solutions as well as in liquid-sand mixtures. In both cases, it was found that phenol adsorption on F400 carbon was fairly fast. More than 60% of the equilibrium adsorption amount could be achieved within the first hour for aqueous solutions. For sand-solution kinetics, it was found that 1% carbon (based on dry sand weight) was capable of achieving more than 95% removal of the initial amount of phenol present in solution (1000 and 5000 ppm). Fourier transform infrared (FT-IR) spectroscopy and X-ray mapping tests indicated a homogenous mixing of the carbon into the cement matrix. The carbon was also found to enhance the hydration of cement, which was retarded by the existence of phenol.


Subject(s)
Charcoal/chemistry , Hazardous Waste , Phenol/pharmacokinetics , Refuse Disposal , Adsorption , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...