Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Radiol Prot ; 22(1): 63-9, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11929115

ABSTRACT

Intramuscular administration of caffeine at a dose of 80 mg kg(-1) body weight to the gastrocnemius muscles of Swiss mice 5 min prior to local irradiation (35 Gy) of the leg delayed the progression of radiation-induced skin reactions in such animals. While 90% epilation with reddening of the skin was noted in animals treated with radiation alone, animals pretreated with caffeine suffered only partial hair loss with slight reddening of the skin on the 16th and 20th days post-irradiation. Beyond the 28th day, damage scores in irradiated feet for both the groups were similar (score 3) and remained unchanged until the 32nd day and then decreased and disappeared completely in both treatment groups by the 40th day after irradiation. In addition, the effect of caffeine on the radiation response of a mouse fibrosarcoma was investigated. Results showed that intratumoral administration of caffeine at a dose of 80 mg kg(-1) body weight 5 min prior to local exposure of tumours to 10 Gy of 60Co gamma-rays did not influence the response of tumours to radiation. The present study thus showed that although caffeine ameliorated radiation-induced skin reactions in the mouse leg, it did not affect the tumour radiation response, indicating its potential application in cancer radiotherapy.


Subject(s)
Caffeine/pharmacology , Radiation Injuries/drug therapy , Skin Neoplasms/radiotherapy , Skin/drug effects , Skin/radiation effects , Animals , Female , Mice
2.
J Radiol Prot ; 19(2): 171-6, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10400154

ABSTRACT

Administration of caffeine (1,3,7-trimethylxanthine), a major component of coffee, to Swiss mice at doses of 80 or 100 mg/kg body weight 60 min prior to whole-body lethal dose of gamma-irradiation (7.5 Gy) resulted in the survival of 70 and 63% of animals, respectively, at the above doses in contrast to absolutely no survivors (LD-100/25 days) in the group exposed to radiation alone. Pre-treatment with a lower concentration of caffeine (50 mg/kg) did not confer any radioprotection. The protection exerted by caffeine (80 mg/kg), however, was reduced from 70 to 50% if administered 30 min prior to irradiation. The trend statistics reveal that a dose of 80 mg/kg administered 60 min before whole-body exposure to 7.5 Gy is optimal for maximal radioprotection. However, caffeine (80 mg/kg) administered within 3 min after irradiation offered no protection. While there is documentation in the literature that caffeine is an antioxidant and radioprotector against the oxic pathway of radiation damage in a wide range of cells and organisms, this is the first report demonstrating unequivocally its potent radioprotective action in terms of survival of lethally whole-body irradiated mice.


Subject(s)
Caffeine/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/pharmacology , Animals , Caffeine/administration & dosage , Chi-Square Distribution , Female , Gamma Rays , Mice , Radiation Injuries, Experimental/mortality , Radiation-Protective Agents/administration & dosage , Time Factors , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...