Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 124: 104099, 2024 02.
Article in English | MEDLINE | ID: mdl-38418028

ABSTRACT

Spirometry is a lung function test involving deep inhalation and forceful deep exhalation. It is widely used to obtain objective information about airflow limitation and to diagnose lung diseases. In contrast, tidal spirometry is based on normal breathing and therefore much more convenient, but it is hardly used in medical care and its relation with conventional (forced) spirometry is largely unknown. Therefore, the objective of this work is to reveal the relation between tidal and forced spirometry. Employing the strong correspondence between the forced flow-volume curves and the Tiffeneau-Pinelli (TP) index, we present a method to obtain (a) the expected tidal flow-volume curve for a given TP-index, and (b) the expected TP-index for a given tidal curve. For patients with similar values of the TP-index, the tidal curves show a larger spread than the forced curves, but their average shape varies in a characteristic way with varying index. Therefore, just as with forced curves, the TP-index provides a useful objective ranking of the average of tidal curves: upon decreasing TP-index the expiratory flow rate changes in that its peak shifts towards smaller expiratory volumes, and its post-peak part becomes dented.


Subject(s)
Exhalation , Lung , Humans , Spirometry , Tidal Volume
2.
Med Biol Eng Comput ; 61(2): 541-553, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36538266

ABSTRACT

There is a considerable interest in understanding transient human upper airway aerodynamics, especially in view of assessing the effects of various ventilation therapies. Experimental analyses in a patient-specific manner pose challenges as the upper airway consists of a narrow confined region with complex anatomy. Pressure measurements are feasible, but, for example, PIV experiments require special measures to accommodate for the light refraction by the model. Computational fluid dynamics can bridge the gap between limited experimental data and detailed flow features. This work aims to validate the use of combined lattice Boltzmann method and a large eddy scale model for simulating respiration, and to identify clinical features of the flow and show the clinical potential of the method. Airflow was computationally analyzed during a realistic, transient, breathing profile in an upper airway geometry ranging from nose to trachea, and the resulting pressure calculations were compared against in vitro experiments. Simulations were conducted on meshes containing about 1 billion cells to ensure accuracy and to capture intrinsic flow features. Airway pressures obtained from simulations and in vitro experiments are in good agreement both during inhalation and exhalation. High velocity pharyngeal and laryngeal jets and recirculation in the region of the olfactory cleft are observed. Graphical Abstract The Lattice-Boltzmann Method combined with Large Eddy Simulations was used to compute the aerodynamics in a human upper airway geometry. The left side of this graphical abstract shows the velocity and vorticity (middle figure in bottom row, and right figure of the right bottom figure) profiles at peak exhalation. The simulations were validated against experiments on a 3D-print of the geometry (shown in the top figures on the right hand side). The pressure drop (right bottom corner) shows a good agreement between experiments and simulations.


Subject(s)
Larynx , Trachea , Humans , Computer Simulation , Nose , Respiration , Nasal Cavity , Computing Methodologies
3.
Med Eng Phys ; 104: 103805, 2022 06.
Article in English | MEDLINE | ID: mdl-35641081

ABSTRACT

Two working mechanisms of Nasal High-Flow Therapy (NHFT) are washout of anatomical dead space and provision of positive end-expiratory pressure (PEEP). The extent of both mechanisms depends on the respiration aerodynamics and the corresponding pressure distribution: at end-expiration the onset of uniform pressure indicates the jet penetration length, and the level of the uniform pressure is the PEEP. The clinical problem is that adequate measurements in patients are presently impossible. In this study, the respiratory pressure distribution is therefore measured in 3D-printed anatomically correct upper-airway models of an adult and an infant. Assuming that elastic fluctuations in airway anatomy are sufficiently small, the aerodynamics in these rigid models will be very similar to the aerodynamics in patients. It appears that, at end-expiration, the jet penetrates into or slightly beyond the nasal cavity, hardly depending on cannula size or NHFT flow rate. PEEP is approximately proportional to the square of the flow rate: it can be doubled by increasing the flow rate by 40%. In the adult model, PEEP is accurately predicted by the dynamic pressure at the prong-exits, but in the infant model this method fails. During respiration, large pressure fluctuations occur when the cannula is relatively large compared to the nostrils.


Subject(s)
Cannula , Nose , Adult , Humans , Infant , Positive-Pressure Respiration/methods , Respiration , Respiratory System
4.
Med Eng Phys ; 97: 1-9, 2021 11.
Article in English | MEDLINE | ID: mdl-34756332

ABSTRACT

Spirometry is a gold standard to assess lung function, and to identify respiratory impairments seen in obstructive lung diseases. The method is used for periodic monitoring, but it only provides snapshot information, and it requires forceful exhalation which is associated with limited reliability and repeatability. Several studies indicate that tidal flow-volume curves measured by pneumotachography or plethysmography can also be used to assess lung function. These methods avoid the forced manoeuvre, but are complex to set up or sensitive to movement. In the present work we address the long-standing problem of the unavailability of an easy-to-use and accurate method for monitoring tidal breathing frequently or even continuously. We show that pressure recordings from a nasal cannula can be accurately converted into scaled flow-volume curves by means of an algorithm that continuously calibrates itself. The method has been validated by feeding realistic healthy and unhealthy breathing patterns to anatomically correct 3D-printed upper airways of an infant and an adult, and by comparing the imposed flow-volume curves to the pressure-derived flow-volume curves. The observed very high level of accuracy opens the route towards remotely monitoring patients with chronic lung diseases.


Subject(s)
Cannula , Respiration , Adult , Humans , Infant , Reproducibility of Results , Spirometry , Tidal Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...