Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Pathobiology ; : 1-12, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643752

ABSTRACT

INTRODUCTION: Acute myeloid leukemia (AML) patients may receive hypomethylating agents such as decitabine (DAC) as part of their treatment. Not all patients respond to this therapy, and if they do, the clinical response may occur only after 3-6 courses of treatment. Hence, early biomarkers predicting response would be very useful. METHODS: We retrospectively analyzed a cohort of 22 AML patients who were treated with DAC. Histology of the bone marrow biopsy, pathogenic mutations, and methylation status were related to the treatment response. RESULTS: In 8/22 (36%) patients, an erythroid dominant response (EDR) pattern, defined as a ratio of myeloid cells/erythroid cells <1, was observed. In the remaining 14 cases, a myeloid predominance was preserved during treatment. No difference in the hypomethylating effect of DAC treatment was observed in patients with and without EDR, as global 5-methylcytosine levels dropped similarly in both groups. Mutational analysis by NGS using a panel of commonly mutated genes in AML showed that patients with an early EDR harbored on average less mutations, with U2AF1 mutations occurring more frequently, whereas RUNX1 mutations were underrepresented compared to non-EDR cases. Interestingly, the development of an EDR correlated with complete remission (7/8 cases with an EDR vs. only 2/14 cases without an EDR). CONCLUSION: We conclude that early histological bone marrow examination for the development of an EDR may be helpful to predict response in AML patients during treatment with DAC.

2.
Pathobiology ; 91(1): 8-17, 2024.
Article in English | MEDLINE | ID: mdl-36791682

ABSTRACT

The expanding digitalization of routine diagnostic histological slides holds a potential to apply artificial intelligence (AI) to pathology, including bone marrow (BM) histology. In this perspective, we describe potential tasks in diagnostics that can be supported, investigations that can be guided, and questions that can be answered by the future application of AI on whole-slide images of BM biopsies. These range from characterization of cell lineages and quantification of cells and stromal structures to disease prediction. First glimpses show an exciting potential to detect subtle phenotypic changes with AI that are due to specific genotypes. The discussion is illustrated by examples of current AI research using BM biopsy slides. In addition, we briefly discuss current challenges for implementation of AI-supported diagnostics.


Subject(s)
Artificial Intelligence , Bone Marrow , Humans , Biopsy , Cell Lineage , Genotype
3.
Hemasphere ; 7(11): e976, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37928625

ABSTRACT

Patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM) occasionally develop diffuse large B-cell lymphoma (DLBCL). This mostly results from LPL/WM transformation, although clonally unrelated DLBCL can also arise. LPL/WM is characterized by activating MYD88L265P (>95%) and CXCR4 mutations (~30%), but the genetic drivers of transformation remain to be identified. Here, in thirteen LPL/WM patients who developed DLBCL, the clonal relationship of LPL and DLBCL together with mutations contributing to transformation were investigated. In 2 LPL/WM patients (15%), high-throughput sequencing of immunoglobulin gene rearrangements showed evidence of >1 clonal B-cell population in LPL tissue biopsies. In the majority of LPL/WM patients, DLBCL presentations were clonally related to the dominant clone in LPL, providing evidence of transformation. However, in 3 patients (23%), DLBCL was clonally unrelated to the major malignant B-cell clone in LPL, of which 2 patients developed de novo DLBCL. In this study cohort, LPL displayed MYD88L265P mutation in 8 out of eleven patients analyzed (73%), while CXCR4 mutations were observed in 6 cases (55%). MYD88WT LPL biopsies present in 3 patients (27%) were characterized by CD79B and TNFAIP3 mutations. Upon transformation, DLBCL acquired novel mutations targeting BTG1, BTG2, CD79B, CARD11, TP53, and PIM1. Together, we demonstrate variable clonal B-cell dynamics in LPL/WM patients developing DLBCL, and the occurrence of clonally unrelated DLBCL in about one-quarter of LPL/WM patients. Moreover, we identified commonly mutated genes upon DLBCL transformation, which together with preserved mutations already present in LPL characterize the mutational landscape of DLBCL occurrences in LPL/WM patients.

4.
Blood Adv ; 7(19): 5911-5924, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37552109

ABSTRACT

Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is underinvestigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (Ig) and T-cell receptor (TCR) rearrangements was performed in paired cHL diagnoses and recurrences among 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal Ig rearrangements were detected by next-generation sequencing (NGS) in 69 of 120 (58%) diagnoses and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24 of 34 patients (71%). Clonally unrelated cHL was observed in 10 of 34 patients (29%) as determined by IG-NGS clonality assessment and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of >2 years, ∼60% of patients with cHL for whom the clonal relationship could be established showed a second primary cHL. Clonal TCR gene rearrangements were identified in 14 of 125 samples (11%), and TCL-associated gene mutations were detected in 7 of 14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged >50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based Ig/TCR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.


Subject(s)
Hodgkin Disease , Lymphoma, T-Cell , Lymphoma , Humans , Hodgkin Disease/diagnosis , Hodgkin Disease/genetics , Hodgkin Disease/pathology , Retrospective Studies , Neoplasm Recurrence, Local , Immunoglobulins
5.
Med Image Anal ; 88: 102881, 2023 08.
Article in English | MEDLINE | ID: mdl-37437452

ABSTRACT

Current hardware limitations make it impossible to train convolutional neural networks on gigapixel image inputs directly. Recent developments in weakly supervised learning, such as attention-gated multiple instance learning, have shown promising results, but often use multi-stage or patch-wise training strategies risking suboptimal feature extraction, which can negatively impact performance. In this paper, we propose to train a ResNet-34 encoder with an attention-gated classification head in an end-to-end fashion, which we call StreamingCLAM, using a streaming implementation of convolutional layers. This allows us to train end-to-end on 4-gigapixel microscopic images using only slide-level labels. We achieve a mean area under the receiver operating characteristic curve of 0.9757 for metastatic breast cancer detection (CAMELYON16), close to fully supervised approaches using pixel-level annotations. Our model can also detect MYC-gene translocation in histologic slides of diffuse large B-cell lymphoma, achieving a mean area under the ROC curve of 0.8259. Furthermore, we show that our model offers a degree of interpretability through the attention mechanism.


Subject(s)
Breast Neoplasms , Neural Networks, Computer , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , ROC Curve
6.
Front Oncol ; 13: 1130686, 2023.
Article in English | MEDLINE | ID: mdl-37035202

ABSTRACT

Introduction: Activated B cells play a key role in the pathogenesis of primary Sjögren's syndrome (pSS) through the production of autoantibodies and the development of ectopic germinal centers in the salivary glands and other affected sites. Around 5-10% of pSS patients develop B-cell lymphoma, usually extranodal marginal zone lymphomas (eMZL) of the mucosa-associated lymphoid tissue (MALT). The aim of the current study is to investigate if the eMZL clonotype is detectable in prediagnostic blood and tissue biopsies of pSS patients. Methods/Results: We studied prediagnostic tissue biopsies of three pSS patients diagnosed with eMZL and four pSS controls through immunoglobulin (IG) gene repertoire sequencing. In all three cases, we observed the eMZL clonotype in prediagnostic tissue biopsies. Among controls, we observed transient elevation of clonotypes in two pSS patients. To evaluate if eMZL clonotypes may also be detected in the circulation, we sequenced a peripheral blood mononuclear cell (PBMC) sample drawn at eMZL diagnosis and two years prior to eMZL relapse in two pSS patients. The eMZL clonotype was detected in the peripheral blood prior to diagnosis in both cases. Next, we selected three pSS patients who developed eMZL lymphoma and five additional pSS patients who remained lymphoma-free. We sequenced the IG heavy chain (IGH) gene repertoire in PBMC samples taken a median of three years before eMZL diagnosis. In two out of three eMZL patients, the dominant clonotype in the prediagnostic PBMC samples matched the eMZL clonotype in the diagnostic biopsy. The eMZL clonotypes observed consisted of stereotypic IGHV gene combinations (IGHV1-69/IGHJ4 and IGHV4-59/IGHJ5) associated with rheumatoid factor activity, a previously reported feature of eMZL in pSS. Discussion: In conclusion, our results indicate that eMZL clonotypes in pSS patients are detectable prior to overt eMZL diagnosis in both tissue biopsies and peripheral blood through immunogenetic sequencing, paving the way for the development of improved methods of early detection of eMZL.

7.
Front Cardiovasc Med ; 10: 1127685, 2023.
Article in English | MEDLINE | ID: mdl-37057097

ABSTRACT

Background: Bicuspid aortic valve (BAV) is associated with ascending aorta aneurysms and dissections. Presently, genetic factors and pathological flow patterns are considered responsible for aneurysm formation in BAV while the exact role of inflammatory processes remains unknown. Methods: In order to objectify inflammation, we employ a highly sensitive, quantitative immunohistochemistry approach. Whole slides of dissected, dilated and non-dilated ascending aortas from BAV patients were quantitatively analyzed. Results: Dilated aortas show a 4-fold increase of lymphocytes and a 25-fold increase in B lymphocytes in the adventitia compared to non-dilated aortas. Tertiary lymphoid structures with B cell follicles and helper T cell expansion were identified in dilated and dissected aortas. Dilated aortas were associated with an increase in M1-like macrophages in the aorta media, in contrast the number of M2-like macrophages did not change significantly. Conclusion: This study finds unexpected large numbers of immune cells in dilating aortas of BAV patients. These findings raise the question whether immune cells in BAV aortopathy are innocent bystanders or contribute to the deterioration of the aortic wall.

8.
Front Oncol ; 13: 1107171, 2023.
Article in English | MEDLINE | ID: mdl-36845702

ABSTRACT

Clonality assessment using the unique rearrangements of immunoglobulin (IG) and T-cell receptor (TR) genes in lymphocytes is a widely applied supplementary test for the diagnosis of B-cell and T-cell lymphoma. To enable a more sensitive detection and a more precise comparison of clones compared with conventional clonality analysis based on fragment analysis, the EuroClonality NGS Working Group developed and validated a next-generation sequencing (NGS)-based clonality assay for detection of the IG heavy and kappa light chain and TR gene rearrangements for formalin-fixed and paraffin-embedded tissues. We outline the features and advantages of NGS-based clonality detection and discuss potential applications for NGS-based clonality testing in pathology, including site specific lymphoproliferations, immunodeficiency and autoimmune disease and primary and relapsed lymphomas. Also, we briefly discuss the role of T-cell repertoire of reactive lymphocytic infiltrations in solid tumors and B-lymphoma.

9.
Histopathology ; 82(7): 1013-1020, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36779226

ABSTRACT

AIMS: Large B cell lymphoma with IRF4 rearrangement (LBCL-IRF4) is a new entity in the 2017 revised World Health Organisation (WHO) classification that was initially mainly reported in children. After identification of a 79-year-old patient, we assessed how often IRF4 rearrangements can be detected in adult diffuse large B cell lymphomas (DLBCLs) which have to be reclassified to LBCL-IRF4 based on fluorescence in-situ hybridisation (FISH) for IRF4. METHODS AND RESULTS: With FISH, we studied the presence of IRF4 rearrangements in 238 lymphomas that were diagnosed as DLBCL according to the previous WHO classification of 2008. CONCLUSIONS: In addition to the index patient, an IRF4 rearrangement was detected in another five of 237 patients (2%). The immunohistochemical profile of these five IRF4 rearranged lymphomas was consistent with previous reports of LBCL-IRF4. One case was recognised to represent transformation of follicular lymphoma rather than de-novo LBCL-IRF4. BCL6 rearrangements were found in two cases of LBCL-IRF4; BCL2 and MYC rearrangements were excluded. Patients presented with limited stage disease with involvement of the head and neck in three patients, and involvement of the lung and thyroid in two others. This study shows that, although rare, LBCL-IRF4 should also be considered in older patients and at localisations other than the head and neck region.


Subject(s)
Lymphoma, Follicular , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Gene Rearrangement , Lymphoma, Follicular/pathology , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-6/genetics
10.
Mod Pathol ; 36(5): 100119, 2023 05.
Article in English | MEDLINE | ID: mdl-36805792

ABSTRACT

Approximately one-third of patients with diffuse large B-cell lymphoma (DLBCL) relapse and often require salvage chemotherapy followed by autologous stem cell transplantation. In most cases, the clonal relationship between the first diagnosis and subsequent relapse is not assessed, thereby potentially missing the identification of second primary lymphoma. In this study, the clonal relationship of 59 paired DLBCL diagnoses and recurrences was established by next-generation sequencing-based detection of immunoglobulin gene rearrangements. Among 50 patients with interpretable results, 43 patients (86%) developed clonally related relapsed disease. This was observed in 100% of early recurrences (<2 years), 80% of the recurrences with an interval between 2 and 5 years, and 73% of late recurrences (≥5 years). On the other hand, 7 (14%) out of 50 patients displayed different dominant clonotypes in primary DLBCL and clinical recurrences, confirming the occurrence of second primary DLBCL; 37% of DLBCL recurrences that occurred ≥4 years after diagnosis were shown to be second primary lymphomas. The clonally unrelated cases were Epstein-Barr virus positive in 43% of the cases, whereas this was only 5% in the relapsed DLBCL cases. In conclusion, next-generation sequencing-based clonality testing in late recurrences should be considered in routine diagnostics to distinguish relapse from second primary lymphoma, as this latter group of patients with DLBCL may benefit from less-intensive treatment strategies.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Lymphoma, Large B-Cell, Diffuse , Humans , Epstein-Barr Virus Infections/pathology , Neoplasm Recurrence, Local/pathology , Herpesvirus 4, Human , Transplantation, Autologous , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy
11.
Cancers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35805000

ABSTRACT

Classical Hodgkin lymphoma (cHL) represents a B-cell lymphoproliferative disease characterized by clonal immunoglobulin gene rearrangements and recurrent genomic aberrations in the Hodgkin Reed-Sternberg cells in a reactive inflammatory background. Several methods are available for the molecular analysis of cHL on both tissue and cell-free DNA isolated from blood, which can provide detailed information regarding the clonal composition and genetic alterations that drive lymphoma pathogenesis. Clonality testing involving the detection of immunoglobulin and T cell receptor gene rearrangements, together with mutation analysis, represent valuable tools for cHL diagnostics, especially for patients with an atypical histological or clinical presentation reminiscent of a reactive lesion or another lymphoma subtype. In addition, clonality assessment may establish the clonal relationship of composite or subsequent lymphoma presentations within one patient. During the last few decades, more insight has been obtained on the molecular mechanisms that drive cHL development, including recurrently affected signaling pathways (e.g., NF-κB and JAK/STAT) and immune evasion. We provide an overview of the different approaches to characterize the molecular composition of cHL, and the implementation of these next-generation sequencing-based techniques in research and diagnostic settings.

12.
Elife ; 112022 02 09.
Article in English | MEDLINE | ID: mdl-35137689

ABSTRACT

Background: Chronic Q fever is a zoonosis caused by the bacterium Coxiella burnetii which can manifest as infection of an abdominal aortic aneurysm (AAA). Antibiotic therapy often fails, resulting in severe morbidity and high mortality. Whereas previous studies have focused on inflammatory processes in blood, the aim of this study was to investigate local inflammation in aortic tissue. Methods: Multiplex immunohistochemistry was used to investigate local inflammation in Q fever AAAs compared to atherosclerotic AAAs in aorta tissue specimen. Two six-plex panels were used to study both the innate and adaptive immune systems. Results: Q fever AAAs and atherosclerotic AAAs contained similar numbers of CD68+ macrophages and CD3+ T cells. However, in Q fever AAAs, the number of CD68+CD206+ M2 macrophages was increased, while expression of GM-CSF was decreased compared to atherosclerotic AAAs. Furthermore, Q fever AAAs showed an increase in both the number of CD8+ cytotoxic T cells and CD3+CD8-FoxP3+ regulatory T cells. Finally, Q fever AAAs did not contain any well-defined granulomas. Conclusions: These findings demonstrate that despite the presence of pro-inflammatory effector cells, persistent local infection with C. burnetii is associated with an immune-suppressed microenvironment. Funding: This work was supported by SCAN consortium: European Research Area - CardioVascualar Diseases (ERA-CVD) grant [JTC2017-044] and TTW-NWO open technology grant [STW-14716].


Subject(s)
Adaptive Immunity/immunology , Aortic Aneurysm, Abdominal/immunology , Atherosclerosis/immunology , Immunity, Innate/immunology , Q Fever/immunology , Aged , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/microbiology , Atherosclerosis/metabolism , Atherosclerosis/microbiology , Female , Humans , Immunohistochemistry/methods , Inflammation/immunology , Inflammation/microbiology , Macrophages/metabolism , Male , Middle Aged , Q Fever/metabolism , Q Fever/microbiology , T-Lymphocytes/metabolism
13.
Ann Rheum Dis ; 81(5): 644-652, 2022 05.
Article in English | MEDLINE | ID: mdl-35144926

ABSTRACT

OBJECTIVE: To comparatively analyse the aberrant affinity maturation of the antinuclear and rheumatoid factor (RF) B cell repertoires in blood and tissues of patients with Sjögren's syndrome (SjS) using an integrated omics workflow. METHODS: Peptide sequencing of anti-Ro60, anti-Ro52, anti-La and RF was combined with B cell repertoire analysis at the DNA, RNA and single cell level in blood B cell subsets, affected salivary gland and extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT) of patients with SjS. RESULTS: Affected tissues contained anti-Ro60, anti-Ro52, anti-La and RF clones as a small part of a polyclonal infiltrate. Anti-Ro60, anti-La and anti-Ro52 clones outnumbered RF clones. MALT lymphoma tissues contained monoclonal RF expansions. Autoreactive clones were not selected from a restricted repertoire in a circulating B cell subset. The antinuclear antibody (ANA) repertoires displayed similar antigen-dependent and immunoglobulin (Ig) G1-directed affinity maturation. RF clones displayed antigen-dependent, IgM-directed and more B cell receptor integrity-dependent affinity maturation. This coincided with extensive intra-clonal diversification in RF-derived lymphomas. Regeneration of clinical disease manifestations after rituximab coincided with large RF clones, which not necessarily belonged to the lymphoma clone, that displayed continuous affinity maturation and intra-clonal diversification. CONCLUSION: The ANA and RF repertoires in patients with SjS display tissue-restricted, antigen-dependent and divergent affinity maturation. Affinity maturation of RF clones deviates further during RF clone derived lymphomagenesis and during regeneration of the autoreactive repertoire after temporary disruption by rituximab. These data give insight into the molecular mechanisms of autoreactive inflammation in SjS, assist MALT lymphoma diagnosis and allow tracking its response to rituximab.


Subject(s)
Lymphoma, B-Cell, Marginal Zone , Proteogenomics , Sjogren's Syndrome , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Humans , Immunoglobulin G/immunology , Rheumatoid Factor/metabolism , Rituximab/therapeutic use , Sjogren's Syndrome/immunology
14.
Eur J Cancer ; 163: 140-151, 2022 03.
Article in English | MEDLINE | ID: mdl-35074650

ABSTRACT

BACKGROUND: With epidemiologic analyses of population-based trends in incidence and outcomes, we ascertained progress against non-Hodgkin's lymphoma (NHL) in children and young adolescents in the Netherlands since 1990. METHODS: Tumour characteristics were extracted from the Netherlands Cancer Registry for patients aged <18 years at diagnosis, between 1990 and 2015. Mortality data for 1980-2016 were derived from Statistics Netherlands. NHL subtypes comprised lymphoblastic lymphoma (LBL), Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL) and anaplastic large cell lymphoma (ALCL). Time trends in incidence and mortality rates and 5-year overall survival (OS) rates were evaluated by average annual percentage change (AAPC) analyses and parametric survival models, respectively. RESULTS: Overall incidence of NHL remained stable at 11 per million person-years (AAPC -0.2%, p = 0.68), with a marked decrease among children of 5-9 years (AAPC -2.6%, p < 0.01), especially among those with BL. Treatment regimens comprised less radiotherapy over time, especially for LBL and BL. Since 2004, most 15-17-year-old patients with NHL have been treated at a paediatric oncology centre. Five-year OS improved from 71% in 1990-94 to 87% in 2010-15 (p < 0.01), the most gain has been achieved in patients with DLBCL and ALCL from 60% and 73%, respectively, to both 90%. Population-based mortality from NHL decreased significantly towards 1.4 per million person-years (AAPC -4.2%, p < 0.01). CONCLUSIONS: This population-based epidemiological study exhibited significant progress against childhood and young adolescent NHL in the Netherlands since 1990, before the advent of a national paediatric oncologic centre in 2018: incidence decreased among children of 5-9 years, survival improved, and mortality steadily decreased over time.


Subject(s)
Burkitt Lymphoma , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Large-Cell, Anaplastic , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Humans , Incidence , Netherlands/epidemiology , Survival Rate
15.
Mod Pathol ; 35(6): 757-766, 2022 06.
Article in English | MEDLINE | ID: mdl-34862451

ABSTRACT

Clonality analysis in classic Hodgkin lymphoma (cHL) is of added value for correctly diagnosing patients with atypical presentation or histology reminiscent of T cell lymphoma, and for establishing the clonal relationship in patients with recurrent disease. However, such analysis has been hampered by the sparsity of malignant Hodgkin and Reed-Sternberg (HRS) cells in a background of reactive immune cells. Recently, the EuroClonality-NGS Working Group developed a novel next-generation sequencing (NGS)-based assay and bioinformatics platform (ARResT/Interrogate) to detect immunoglobulin (IG) gene rearrangements for clonality testing in B-cell lymphoproliferations. Here, we demonstrate the improved performance of IG-NGS compared to conventional BIOMED-2/EuroClonality analysis to detect clonal gene rearrangements in 16 well-characterized primary cHL cases within the IG heavy chain (IGH) and kappa light chain (IGK) loci. This was most obvious in formalin-fixed paraffin-embedded (FFPE) tissue specimens, where three times more clonal cases were detected with IG-NGS (9 cases) compared to BIOMED-2 (3 cases). In total, almost four times more clonal rearrangements were detected in FFPE with IG-NGS (N = 23) as compared to BIOMED-2/EuroClonality (N = 6) as judged on identical IGH and IGK targets. The same clonal rearrangements were also identified in paired fresh frozen cHL samples. To validate the neoplastic origin of the detected clonotypes, IG-NGS clonality analysis was performed on isolated HRS cells, demonstrating identical clonotypes as detected in cHL whole-tissue specimens. Interestingly, IG-NGS and HRS single-cell analysis after DEPArray™ digital sorting revealed rearrangement patterns and copy number variation profiles indicating clonal diversity and intratumoral heterogeneity in cHL. Our data demonstrate improved performance of NGS-based detection of IG gene rearrangements in cHL whole-tissue specimens, providing a sensitive molecular diagnostic assay for clonality assessment in Hodgkin lymphoma.


Subject(s)
Genes, Immunoglobulin , Hodgkin Disease , DNA Copy Number Variations , Gene Rearrangement , High-Throughput Nucleotide Sequencing , Hodgkin Disease/diagnosis , Hodgkin Disease/genetics , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin kappa-Chains/genetics
16.
Pathology ; 54(3): 318-327, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34772487

ABSTRACT

Cellularity estimation forms an important aspect of the visual examination of bone marrow biopsies. In clinical practice, cellularity is estimated by eye under a microscope, which is rapid, but subjective and subject to inter- and intraobserver variability. In addition, there is little consensus in the literature on the normal variation of cellularity with age. Digital image analysis may be used for more objective quantification of cellularity. As such, we developed a deep neural network for the segmentation of six major cell and tissue types in digitized bone marrow trephine biopsies. Using this segmentation, we calculated the overall bone marrow cellularity in a series of biopsies from 130 patients across a wide age range. Using intraclass correlation coefficients (ICC), we measured the agreement between the quantification by the neural network and visual estimation by two pathologists and compared it to baseline human performance. We also examined the age-related changes of cellularity and cell lineages in bone marrow and compared our results to those found in the literature. The network was capable of accurate segmentation (average accuracy and dice score of 0.95 and 0.76, respectively). There was good neural network-pathologist agreement on cellularity measurements (ICC=0.78, 95% CI 0.58-0.85). We found a statistically significant downward trend for cellularity, myelopoiesis and megakaryocytes with age in our cohort. The mean cellularity began at approximately 50% in the third decade of life and then decreased ±2% per decade to 40% in the seventh and eighth decade, but the normal range was very wide (30-70%).


Subject(s)
Bone Marrow , Deep Learning , Biopsy , Bone Marrow/pathology , Bone Marrow Cells/pathology , Cell Lineage , Humans
19.
Pediatr Blood Cancer ; 68(11): e29285, 2021 11.
Article in English | MEDLINE | ID: mdl-34390161

ABSTRACT

Non-anaplasticperipheral T-cell lymphomas (PTCL) are rare tumors in children, adolescents, and young adults (CAYA) with poor prognosis and scarce genetic data. We analyzed lymphoma tissue from 36 patients up to 18 years old with PTCL, not otherwise specified (PTCL-NOS), hepatosplenic T-cell lymphoma, Epstein-Barr virus (EBV)-positive T-lymphoproliferative diseases, subcutaneous panniculitis-like T-cell lymphoma, and other PTCL types. Twenty-three patients (64%) had at least one genetic variant detectable, including TET2, KMT2C, PIK3D, and DMNT3A. TP53 and RHOA variants, commonly found in adults, were not identified. Eight of 20 (40%) CAYA PTCL-NOS had no detectable mutations. The genetic findings suggest that CAYA PTCL differ from adult cases.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, T-Cell, Peripheral , Lymphoma, T-Cell , Adolescent , Child , Herpesvirus 4, Human , Humans , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell, Peripheral/genetics
20.
J Mol Diagn ; 23(9): 1097-1104, 2021 09.
Article in English | MEDLINE | ID: mdl-34020040

ABSTRACT

Clonality assessment of the Ig heavy- and light-chain genes (IGH and IGK) using GeneScan analysis is an important supplemental assay in diagnostic testing for lymphoma. Occasionally cases with an IGK rearrangement pattern that cannot readily be assigned to a monoclonal lymphoma are encountered, whereas the occurrence of biclonal lymphomas is rare, and the result of the IGH locus of these cases is in line with monoclonality. Three such ambiguous cases were assessed for clonality using next-generation sequencing. Information on the sequences of the rearrangements, combined with knowledge of the complex organization of the IGK locus, pointed to two explanations that can attribute seemingly biclonal IGK rearrangements to a single clone. In two cases, this explanation involved inversion rearrangements on the IGK locus, whereas in the third case, the cross-reactivity of primers generated an additional clonal product. In conclusion, next-generation sequencing-based clonality assessment allows for the detection of both inversion rearrangements and the cross-reactivity of primers, and can therefore facilitate the interpretation of cases of lymphoma with complex IGK rearrangement patterns.


Subject(s)
B-Lymphocytes/immunology , Clone Cells/immunology , Gene Rearrangement , Genes, Immunoglobulin , High-Throughput Nucleotide Sequencing/methods , Immunoglobulin kappa-Chains/genetics , Lymphoma, B-Cell/genetics , Lymphoma, Follicular/genetics , Genetic Loci , Humans , Immunoglobulin Heavy Chains/genetics , Introns , Phenotype , Sequence Inversion
SELECTION OF CITATIONS
SEARCH DETAIL
...