Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 49(18): 10397-10418, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34508352

ABSTRACT

Understanding how epigenetic variation in non-coding regions is involved in distal gene-expression regulation is an important problem. Regulatory regions can be associated to genes using large-scale datasets of epigenetic and expression data. However, for regions of complex epigenomic signals and enhancers that regulate many genes, it is difficult to understand these associations. We present StitchIt, an approach to dissect epigenetic variation in a gene-specific manner for the detection of regulatory elements (REMs) without relying on peak calls in individual samples. StitchIt segments epigenetic signal tracks over many samples to generate the location and the target genes of a REM simultaneously. We show that this approach leads to a more accurate and refined REM detection compared to standard methods even on heterogeneous datasets, which are challenging to model. Also, StitchIt REMs are highly enriched in experimentally determined chromatin interactions and expression quantitative trait loci. We validated several newly predicted REMs using CRISPR-Cas9 experiments, thereby demonstrating the reliability of StitchIt. StitchIt is able to dissect regulation in superenhancers and predicts thousands of putative REMs that go unnoticed using peak-based approaches suggesting that a large part of the regulome might be uncharted water.


Subject(s)
Chromatin/metabolism , Data Analysis , Enhancer Elements, Genetic , Epigenesis, Genetic , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans
2.
Biol Chem ; 402(8): 973-982, 2021 07 27.
Article in English | MEDLINE | ID: mdl-33660495

ABSTRACT

Genome-wide CRISPR screens are becoming more widespread and allow the simultaneous interrogation of thousands of genomic regions. Although recent progress has been made in the analysis of CRISPR screens, it is still an open problem how to interpret CRISPR mutations in non-coding regions of the genome. Most of the tools concentrate on the interpretation of mutations introduced in gene coding regions. We introduce a computational pipeline that uses epigenomic information about regulatory elements for the interpretation of CRISPR mutations in non-coding regions. We illustrate our analysis protocol on the analysis of a genome-wide CRISPR screen in hTERT-RPE1 cells and reveal novel regulatory elements that mediate chemoresistance against doxorubicin in these cells. We infer links to established and to novel chemoresistance genes. Our analysis protocol is general and can be applied on any cell type and with different CRISPR enzymes.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genomics
3.
PLoS Comput Biol ; 16(1): e1007516, 2020 01.
Article in English | MEDLINE | ID: mdl-31961873

ABSTRACT

In pathology, tissue images are evaluated using a light microscope, relying on the expertise and experience of pathologists. There is a great need for computational methods to quantify and standardize histological observations. Computational quantification methods become more and more essential to evaluate tissue images. In particular, the distribution of tumor cells and their microenvironment are of special interest. Here, we systematically investigated tumor cell properties and their spatial neighborhood relations by a new application of statistical analysis to whole slide images of Hodgkin lymphoma, a tumor arising in lymph nodes, and inflammation of lymph nodes called lymphadenitis. We considered properties of more than 400, 000 immunohistochemically stained, CD30-positive cells in 35 whole slide images of tissue sections from subtypes of the classical Hodgkin lymphoma, nodular sclerosis and mixed cellularity, as well as from lymphadenitis. We found that cells of specific morphology exhibited significantly favored and unfavored spatial neighborhood relations of cells in dependence of their morphology. This information is important to evaluate differences between Hodgkin lymph nodes infiltrated by tumor cells (Hodgkin lymphoma) and inflamed lymph nodes, concerning the neighborhood relations of cells and the sizes of cells. The quantification of neighborhood relations revealed new insights of relations of CD30-positive cells in different diagnosis cases. The approach is general and can easily be applied to whole slide image analysis of other tumor types.


Subject(s)
Computational Biology/methods , Hodgkin Disease/pathology , Image Interpretation, Computer-Assisted/methods , Tumor Microenvironment/physiology , Cell Size , Hodgkin Disease/diagnostic imaging , Humans , Immunohistochemistry , Reed-Sternberg Cells/cytology , Reed-Sternberg Cells/pathology
4.
Elife ; 82019 03 06.
Article in English | MEDLINE | ID: mdl-30838976

ABSTRACT

Current technologies used to generate CRISPR/Cas gene perturbation reagents are labor intense and require multiple ligation and cloning steps. Furthermore, increasing gRNA sequence diversity negatively affects gRNA distribution, leading to libraries of heterogeneous quality. Here, we present a rapid and cloning-free mutagenesis technology that can efficiently generate covalently-closed-circular-synthesized (3Cs) CRISPR/Cas gRNA reagents and that uncouples sequence diversity from sequence distribution. We demonstrate the fidelity and performance of 3Cs reagents by tailored targeting of all human deubiquitinating enzymes (DUBs) and identify their essentiality for cell fitness. To explore high-content screening, we aimed to generate the largest up-to-date gRNA library that can be used to interrogate the coding and noncoding human genome and simultaneously to identify genes, predicted promoter flanking regions, transcription factors and CTCF binding sites that are linked to doxorubicin resistance. Our 3Cs technology enables fast and robust generation of bias-free gene perturbation libraries with yet unmatched diversities and should be considered an alternative to established technologies.


Subject(s)
Gene Targeting/methods , Mutagenesis , RNA, Guide, Kinetoplastida/metabolism , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Endonucleases , Humans , RNA, Guide, Kinetoplastida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...