Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(23): 232503, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905650

ABSTRACT

We investigate the effects of two-body currents on magnetic dipole moments of medium-mass and heavy nuclei using the valence-space in-medium similarity renormalization group with chiral effective field theory interactions and currents. Focusing on near doubly magic nuclei from oxygen to bismuth, we have found that the leading two-body currents globally improve the agreement with experimental magnetic moments. Moreover, our results show the importance of multishell effects for ^{41}Ca, which suggest that the Z=N=20 gap in ^{40}Ca is not as robust as in ^{48}Ca. The increasing contribution of two-body currents in heavier systems is explained by the operator structure of the center-of-mass dependent Sachs term.

2.
Phys Rev Lett ; 132(23): 232701, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905655

ABSTRACT

Neutron stars contain neutron-rich matter with around 5% protons at nuclear saturation density. In this Letter, we consider equilibrium between bulk phases of matter based on asymmetric nuclear matter calculations using chiral effective field theory interactions rather than, as has been done in the past, by interpolation between the properties of symmetric nuclear matter and pure neutron matter. Neutron drip (coexistence of nuclear matter with pure neutrons) is well established, but from earlier work it is unclear whether proton drip (equilibrium between two phases, both of which contain protons and neutrons) is possible. We find that proton drip is a robust prediction of any physically reasonable equation of state, but that it occurs over a limited region of densities and proton fractions. An analytical model based on expanding the energy in powers of the proton density, rather than the neutron excess, is able to account for these features of the phase diagram.

3.
Phys Rev Lett ; 130(7): 072701, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867798

ABSTRACT

We calculate the equation of state of asymmetric nuclear matter at finite temperature based on chiral effective field theory interactions to next-to-next-to-next-to-leading order. Our results assess the theoretical uncertainties from the many-body calculation and the chiral expansion. Using a Gaussian process emulator for the free energy, we derive the thermodynamic properties of matter through consistent derivatives and use the Gaussian process to access arbitrary proton fraction and temperature. This enables a first nonparametric calculation of the equation of state in beta equilibrium, and of the speed of sound and the symmetry energy at finite temperature. Moreover, our results show that the thermal part of the pressure decreases with increasing densities.

4.
Phys Rev Lett ; 126(10): 102501, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33784121

ABSTRACT

A direct measurement of the decay width of the excited 0_{1}^{+} state of ^{6}Li using the relative self-absorption technique is reported. Our value of Γ_{γ,0_{1}^{+}→1_{1}^{+}}=8.17(14)_{stat.}(11)_{syst.} eV provides sufficiently low experimental uncertainties to test modern theories of nuclear forces. The corresponding transition rate is compared to the results of ab initio calculations based on chiral effective field theory that take into account contributions to the magnetic dipole operator beyond leading order. This enables a precision test of the impact of two-body currents that enter at next-to-leading order.

5.
Phys Rev Lett ; 125(14): 142502, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33064516

ABSTRACT

We study the equation of state of symmetric nuclear matter at zero temperature over a wide range of densities using two complementary theoretical approaches. At low densities, up to twice nuclear saturation density, we compute the energy per particle based on modern nucleon-nucleon and three-nucleon interactions derived within chiral effective field theory. For higher densities, we derive for the first time constraints in a Fierz-complete setting directly based on quantum chromodynamics using functional renormalization group techniques. We find remarkable consistency of the results obtained from both approaches as they come together in density and the natural emergence of a maximum in the speed of sound c_{S} at supranuclear densities. The presence of this maximum appears tightly connected to the formation of a diquark gap. Notably, this maximum is observed to exceed the asymptotic value c_{S}^{2}=1/3 while its exact position in terms of the density cannot yet be determined conclusively.

6.
Phys Rev Lett ; 122(4): 042501, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768314

ABSTRACT

We present an efficient Monte Carlo framework for perturbative calculations of infinite nuclear matter based on chiral two-, three-, and four-nucleon interactions. The method enables the incorporation of all many-body contributions in a straightforward and transparent way, and makes it possible to extract systematic uncertainty estimates by performing order-by-order calculations in the chiral expansion as well as the many-body expansion. The versatility of this new framework is demonstrated by applying it to chiral low-momentum interactions, exhibiting a very good many-body convergence up to fourth order. Following these benchmarks, we explore new chiral interactions up to next-to-next-to-next-to-leading order (N^{3}LO). Remarkably, simultaneous fits to the triton and to saturation properties can be achieved, while all three-nucleon low-energy couplings remain natural. The theoretical uncertainties of nuclear matter are significantly reduced when going from next-to-next-to-leading order to N^{3}LO.

7.
Rep Prog Phys ; 76(12): 126301, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24190875

ABSTRACT

We review recent developments in the use of renormalization group (RG) methods in low-energy nuclear physics. These advances include enhanced RG technology, particularly for three-nucleon forces, which greatly extends the reach and accuracy of microscopic calculations. We discuss new results for the nucleonic equation of state with applications to astrophysical systems such as neutron stars, new calculations of the structure and reactions of finite nuclei, and new explorations of correlations in nuclear systems.

8.
Phys Rev Lett ; 111(3): 032501, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909312

ABSTRACT

We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.

9.
Phys Rev Lett ; 110(3): 032504, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23373917

ABSTRACT

Neutron matter presents a unique system for chiral effective field theory because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N(3)LO). We present the first complete N(3)LO calculation of the neutron matter energy. This includes the subleading three-nucleon forces for the first time and all leading four-nucleon forces. We find relatively large contributions from N(3)LO three-nucleon forces. Our results provide constraints for neutron-rich matter in astrophysics with controlled theoretical uncertainties.

10.
Phys Rev Lett ; 105(16): 161102, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-21230959

ABSTRACT

We show that microscopic calculations based on chiral effective field theory interactions constrain the properties of neutron-rich matter below nuclear densities to a much higher degree than is reflected in commonly used equations of state. Combined with observed neutron star masses, our results lead to a radius R=9.7-13.9 km for a 1.4M⊙ star, where the theoretical range is due, in about equal amounts, to uncertainties in many-body forces and to the extrapolation to high densities.

SELECTION OF CITATIONS
SEARCH DETAIL
...