Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Am J Bot ; 111(5): e16323, 2024 May.
Article in English | MEDLINE | ID: mdl-38659163

ABSTRACT

PREMISE: The herbaceous layer accounts for the majority of plant biodiversity in eastern North American forests, encompassing substantial variation in life history strategy and function. One group of early-season herbaceous understory species, colloquially referred to as spring ephemeral wildflowers, are ecologically and culturally important, but little is known about the prevalence and biogeographic patterns of the spring ephemeral strategy. METHODS: We used observations collected by the Global Biodiversity Information Facility (GBIF) to quantify the ephemerality of 559 understory forb species across eastern North America and classify them according to a continuous ephemerality index (ranging from 0 = never ephemeral to 1 = always ephemeral). We then used this information to model where ephemeral forbs were most common across the landscape with the goal of identifying geographic and environmental drivers important to their distributions and ranges. RESULTS: Only 3.4% of all understory wildflower species were spring ephemerals in all parts of their range, and 18.4% (103 species) were ephemeral in at least part of their range. Spring ephemerals peaked in absolute species richness and relative proportion at mid latitudes. CONCLUSIONS: Spring ephemeral phenology is an important shade-avoidance strategy for a large segment of the total understory species in temperate deciduous forests. In North America, the strategy is relatively most important for forest understories at mid latitudes. The definitions of spring ephemerality we provide here serve as an important ecological context for conservation priorities and to evaluate responses of this biodiverse group to future environmental change.


Subject(s)
Seasons , North America , Biodiversity , Forests , Plant Dispersal
2.
Am J Bot ; 110(9): e16225, 2023 09.
Article in English | MEDLINE | ID: mdl-37551738

ABSTRACT

PREMISE: Previous experimental studies have shown that poison ivy (Toxicodendron radicans; Anacardicaceae) responds to elevated CO2 with increased leaf production, water-use efficiency, and toxicity (allergenic urushiol). However, long-term field data suggest no increase in poison ivy abundance over time. Using herbarium specimens, we examined whether poison ivy and other species shifted leaf traits under natural conditions with increasing atmospheric CO2 (pCO2 ) over the past century. METHODS: We measured stomatal density, leaf area, leaf N, leaf C:N, leaf carbon isotope discrimination (Δleaf ), and intrinsic water-use efficiency (iWUE) from 327 specimens collected from 1838 to 2020 across Pennsylvania. We compared poison ivy's responses to two evolutionarily related tree species, Toxicodendron vernix and Rhus typhina (Anacardiacae) and one ecological analog, Parthenocissus quinquefolia (Vitaceae), a common co-occurring liana. RESULTS: Stomatal density significantly decreased (P < 0.05) in poison ivy and the ecologically similar liana P. quinquefolia over the past century, but did not change in the related trees T. vernix and R. typhina. None of these species showed significant trends in changes in leaf N or C:N. Surprisingly, in poison ivy, but not the other species, Δleaf increased with increased pCO2 , corresponding to significant declines in iWUE over time. CONCLUSIONS: In contrast to the results of short-term experimental studies, iWUE decreased in poison ivy over the last century. Trait responses to pCO2 varied by species. Herbarium specimens suggest that realized long-term plant physiological responses to increased CO2 may not be reflected in short-term experimental growth studies, highlighting the value of collections.


Subject(s)
Toxicodendron , Carbon Dioxide , Trees , Water
3.
Nat Commun ; 13(1): 7157, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418327

ABSTRACT

Temperate understory plant species are at risk from climate change and anthropogenic threats that include increased deer herbivory, habitat loss, pollinator declines and mismatch, and nutrient pollution. Recent work suggests that spring ephemeral wildflowers may be at additional risk due to phenological mismatch with deciduous canopy trees. The study of this dynamic, commonly referred to as "phenological escape", and its sensitivity to spring temperature is limited to eastern North America. Here, we use herbarium specimens to show that phenological sensitivity to spring temperature is remarkably conserved for understory wildflowers across North America, Europe, and Asia, but that canopy trees in North America are significantly more sensitive to spring temperature compared to in Asia and Europe. We predict that advancing tree phenology will lead to decreasing spring light windows in North America while spring light windows will be maintained or even increase in Asia and Europe in response to projected climate warming.


Subject(s)
Deer , Animals , Temperature , Seasons , Trees , Climate Change
4.
Ecol Lett ; 25(4): 900-912, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35098634

ABSTRACT

Successful control and prevention of biological invasions depend on identifying traits of non-native species that promote fitness advantages in competition with native species. Here, we show that, among 76 native and non-native woody plants of deciduous forests of North America, invaders express a unique functional syndrome that combines high metabolic rate with robust leaves of longer lifespan and a greater duration of annual carbon gain, behaviours enabled by seasonally plastic xylem structure and rapid production of thin roots. This trait combination was absent in all native species examined and suggests the success of forest invaders is driven by a novel resource-use strategy. Furthermore, two traits alone-annual leaf duration and nuclear DNA content-separated native and invasive species with 93% accuracy, supporting the use of functional traits in invader risk assessments. A trait syndrome reflecting both fast growth capacity and understorey persistence may be a key driver of forest invasions.


Subject(s)
Forests , Trees , Carbon/metabolism , Introduced Species , Plant Leaves , Trees/genetics
5.
Am J Bot ; 108(11): 2112-2126, 2021 11.
Article in English | MEDLINE | ID: mdl-34755895

ABSTRACT

Plant phenology research has surged in recent decades, in part due to interest in phenological sensitivity to climate change and the vital role phenology plays in ecology. Many local-scale studies have generated important findings regarding the physiology, responses, and risks associated with shifts in plant phenology. By comparison, our understanding of regional- and global-scale phenology has been largely limited to remote sensing of green-up without the ability to differentiate among plant species. However, a new generation of analytical tools and data sources-including enhanced remote sensing products, digitized herbarium specimen data, and public participation in science-now permits investigating patterns and drivers of phenology across extensive taxonomic, temporal, and spatial scales, in an emerging field that we call macrophenology. Recent studies have highlighted how phenology affects dynamics at broad scales, including species interactions and ranges, carbon fluxes, and climate. At the cusp of this developing field of study, we review the theoretical and practical advances in four primary areas of plant macrophenology: (1) global patterns and shifts in plant phenology, (2) within-species changes in phenology as they mediate species' range limits and invasions at the regional scale, (3) broad-scale variation in phenology among species leading to ecological mismatches, and (4) interactions between phenology and global ecosystem processes. To stimulate future research, we describe opportunities for macrophenology to address grand challenges in each of these research areas, as well as recently available data sources that enhance and enable macrophenology research.


Subject(s)
Climate Change , Ecosystem , Plants , Seasons
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526679

ABSTRACT

The accessibility of global biodiversity information has surged in the past two decades, notably through widespread funding initiatives for museum specimen digitization and emergence of large-scale public participation in community science. Effective use of these data requires the integration of disconnected datasets, but the scientific impacts of consolidated biodiversity data networks have not yet been quantified. To determine whether data integration enables novel research, we carried out a quantitative text analysis and bibliographic synthesis of >4,000 studies published from 2003 to 2019 that use data mediated by the world's largest biodiversity data network, the Global Biodiversity Information Facility (GBIF). Data available through GBIF increased 12-fold since 2007, a trend matched by global data use with roughly two publications using GBIF-mediated data per day in 2019. Data-use patterns were diverse by authorship, geographic extent, taxonomic group, and dataset type. Despite facilitating global authorship, legacies of colonial science remain. Studies involving species distribution modeling were most prevalent (31% of literature surveyed) but recently shifted in focus from theory to application. Topic prevalence was stable across the 17-y period for some research areas (e.g., macroecology), yet other topics proportionately declined (e.g., taxonomy) or increased (e.g., species interactions, disease). Although centered on biological subfields, GBIF-enabled research extends surprisingly across all major scientific disciplines. Biodiversity data mobilization through global data aggregation has enabled basic and applied research use at temporal, spatial, and taxonomic scales otherwise not possible, launching biodiversity sciences into a new era.


Subject(s)
Biodiversity , Databases, Factual/standards , Animals , Classification , Humans , Museums
7.
Front Plant Sci ; 12: 787407, 2021.
Article in English | MEDLINE | ID: mdl-35111176

ABSTRACT

Community science image libraries offer a massive, but largely untapped, source of observational data for phenological research. The iNaturalist platform offers a particularly rich archive, containing more than 49 million verifiable, georeferenced, open access images, encompassing seven continents and over 278,000 species. A critical limitation preventing scientists from taking full advantage of this rich data source is labor. Each image must be manually inspected and categorized by phenophase, which is both time-intensive and costly. Consequently, researchers may only be able to use a subset of the total number of images available in the database. While iNaturalist has the potential to yield enough data for high-resolution and spatially extensive studies, it requires more efficient tools for phenological data extraction. A promising solution is automation of the image annotation process using deep learning. Recent innovations in deep learning have made these open-source tools accessible to a general research audience. However, it is unknown whether deep learning tools can accurately and efficiently annotate phenophases in community science images. Here, we train a convolutional neural network (CNN) to annotate images of Alliaria petiolata into distinct phenophases from iNaturalist and compare the performance of the model with non-expert human annotators. We demonstrate that researchers can successfully employ deep learning techniques to extract phenological information from community science images. A CNN classified two-stage phenology (flowering and non-flowering) with 95.9% accuracy and classified four-stage phenology (vegetative, budding, flowering, and fruiting) with 86.4% accuracy. The overall accuracy of the CNN did not differ from humans (p = 0.383), although performance varied across phenophases. We found that a primary challenge of using deep learning for image annotation was not related to the model itself, but instead in the quality of the community science images. Up to 4% of A. petiolata images in iNaturalist were taken from an improper distance, were physically manipulated, or were digitally altered, which limited both human and machine annotators in accurately classifying phenology. Thus, we provide a list of photography guidelines that could be included in community science platforms to inform community scientists in the best practices for creating images that facilitate phenological analysis.

8.
Curr Biol ; 30(22): R1368-R1370, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33202235

ABSTRACT

Dead museum specimens are finding new life, providing critical data about otherwise hidden impacts of human-caused environmental change. New research powerfully leverages decades of plant collections to uncover global responses in floral pigmentation linked to ozone and climate change.


Subject(s)
Museums , Ozone , Biology , Climate Change , Humans , Pigmentation , Temperature
9.
Bioscience ; 70(6): 610-620, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32665738

ABSTRACT

Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens-preserved plant material curated in natural history collections-but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.

10.
Appl Plant Sci ; 7(4): e01223, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31024779

ABSTRACT

PREMISE OF THE STUDY: Mycorrhiza are critical to ecosystem functioning, but a lack of historical baseline data limits our understanding of the long-term belowground effects of global change. Herbarium specimens may provide this needed insight. However, it is unknown whether DNA of arbuscular mycorrhizal fungi (AMF) can be reliably extracted from vascular plant specimen roots. METHODS: We sampled roots from herbarium specimens of four herbaceous forest species collected in western Pennsylvania between 1881-2008. Using molecular methods (terminal restriction fragment length polymorphism and sequence analysis), we quantified AMF communities from specimen roots and tested for contamination. RESULTS: We successfully amplified AMF DNA from 44% (21/48) of the root but not leaf samples, indicating specimen contamination was negligible. As expected, there were significant differences in AMF composition between plant species (P < 0.05). However, no differences in AMF communities were detected through time, possibly due to limited sample size and low amplification rates in recent collections. DISCUSSION: Herbaria have potential as sources of valuable belowground microbial data to answer questions across geographic, temporal, and taxonomic scales otherwise not feasible. Ongoing methodological developments will only magnify this potential. Further tests are needed to determine curatorial practices that maximize this innovative use of herbarium specimens.

11.
Ecol Lett ; 22(4): 616-623, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30714287

ABSTRACT

Interacting species can respond differently to climate change, causing unexpected consequences. Many understorey wildflowers in deciduous forests leaf out and flower in the spring when light availability is the highest before overstorey canopy closure. Therefore, different phenological responses by understorey and overstorey species to increased spring temperature could have significant ecological implications. Pairing contemporary data with historical observations initiated by Henry David Thoreau (1850s), we found that overstorey tree leaf out is more responsive to increased spring temperature than understorey wildflower phenology, resulting in shorter periods of high light in the understorey before wildflowers are shaded by tree canopies. Because of this overstorey-understorey mismatch, we estimate that wildflower spring carbon budgets in the northeastern United States were 12-26% larger during Thoreau's era and project a 10-48% reduction during this century. This underappreciated phenomenon may have already reduced wildflower fitness and could lead to future population declines in these ecologically important species.


Subject(s)
Carbon , Forests , Trees , Plant Leaves , Seasons
12.
New Phytol ; 221(2): 778-788, 2019 01.
Article in English | MEDLINE | ID: mdl-30152089

ABSTRACT

Strategies of herbaceous species in deciduous forests are often characterized by the timing of life history phases (e.g. emergence, flowering, leaf senescence) relative to overstory tree canopy closure. Although springtime photosynthesis is assumed to account for the majority of their annual carbon budgets, the 12-month photosynthetic trajectories of forest herbs have not been quantified. We measured the temporal dynamics of carbon assimilation for seven native herbaceous perennials and the biennial Alliaria petiolata, a widespread invader in eastern North American forests. We assessed the relative importance of spring, summer, and autumn to species-level annual carbon budgets. Spring-emerging species showed significant variation in carbon assimilation patterns. High spring irradiance before canopy closure accounted for 39-100% of species-level annual carbon assimilation, but summer and autumn accounted for large proportions of some species' carbon budgets (up to 58% and 19%, respectively). Alliaria was phenologically unique, taking advantage both autumn and spring irradiance. Although spring-emerging understory species are often expected to rely on early-season irradiance, our results highlight interspecific differences and the importance of mid-late season carbon gain. Phenological strategies of forest herbs are a continuum rather than discrete categories, and invasive species may follow strategies that are underrepresented in the native flora.


Subject(s)
Brassicaceae/physiology , Carbon/metabolism , Ecosystem , Flowers/physiology , Forests , Introduced Species , Seasons , Models, Biological , Photosynthesis , Plant Leaves/physiology , Quantitative Trait, Heritable
13.
Appl Plant Sci ; 6(11): e01193, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30473939

ABSTRACT

PREMISE OF THE STUDY: Innovative approaches to specimen collection and curation are needed to maximize the utility of natural history collections in a new era of data use. Associated data, such as digital images from the field, are routinely collected with recent herbarium specimens. However, these data often remain inaccessible and are rarely curated alongside the associated physical specimens, which limits future data use. METHODS AND RESULTS: We leveraged the widely used citizen science platform, iNaturalist, to permanently associate field-collected data to herbarium specimens, including information not well preserved in traditional specimens. This protocol improves the efficiency and accuracy of all steps from the collecting event to specimen curation and enhances the potential uses of specimens. CONCLUSIONS: iNaturalist provides a standardized and cost-efficient enhancement to specimen collection and curation that can be easily adapted for specific research goals or other collection types beyond herbaria.

14.
PLoS One ; 13(5): e0196746, 2018.
Article in English | MEDLINE | ID: mdl-29718966

ABSTRACT

Recent studies have concluded that native and invasive species share a common set of trait relationships. However, native species in isolated regions might be functionally constrained by their unique evolutionary histories such that they follow different carbon capture strategies than introduced species. We compared leaf traits relating to resource investment, carbon return, and resource-use efficiency in 16 native (endemic) and three non-native (invasive) species in a temperate forest in Canterbury, South Island, New Zealand. Trait differences were more closely associated with leaf habit than nativity. Deciduous species (including invaders) exhibited greater maximum photosynthetic rates at similar resource costs, which resulted in greater nitrogen- and energy-use efficiencies than evergreen natives. Leaf area was the only trait that differed significantly by nativity (over two-fold larger in invaders). Invaders and deciduous natives both occupied the 'fast return' end of the leaf economics spectrum in contrast to the native evergreens which had comparatively slow return on investment. Dominant woody invaders in this forest are physiologically distinct from many New Zealand endemic species, which are overwhelmingly evergreen. It remains unclear whether these trait differences translate to an ecological divergence in plant strategy, but these results suggest that ecophysiological tradeoffs are likely constrained by biogeography.


Subject(s)
Forests , Plant Leaves/anatomy & histology , Trees/anatomy & histology , Ecosystem , Introduced Species , New Zealand , Photosynthesis , Phylogeography
16.
AoB Plants ; 9(2): plx011, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28496966

ABSTRACT

Overabundant generalist herbivores can facilitate non-native plant invasions, presumably through direct and indirect modifications to the environment that affect plant performance. However, ecophysiological mechanisms behind ungulate-mediated plant invasions have not been well-studied. At a long-term Odocoileus virginianus (white-tailed deer) exclusion site in a temperate deciduous forest, we quantified deer-mediated ecophysiological impacts on an invasive biennial Alliaria petiolata (garlic mustard) and two palatable native herbaceous perennials, Maianthemum racemosum and Trillium grandiflorum. In mid-summer, we found that leaf-level light availability was higher in unfenced areas compared with areas fenced to exclude deer. Alliaria in unfenced areas exhibited 50 % higher mean maximum photosynthetic rates compared with fenced areas. Further, specific leaf area decreased by 48 % on average in unfenced areas, suggesting leaf structural responses to higher light levels. Similarly, Maianthemum had 42 % higher mean photosynthetic rates and 33 % decreased mean specific leaf area in unfenced areas, but these functional advantages were likely countered by high rates of deer herbivory. By contrast, Trillium exhibited significantly lower (26 %) maximum photosynthetic rates in unfenced areas, but SLA did not differ. Deer-mediated differences in light saturated photosynthetic rates for all three species were only significant during months with overstory tree canopy cover, when light availability in the herb layer was significantly lower in fenced areas. Alliaria's enhanced photosynthetic rates implicate overabundant deer, a situation that is nearly ubiquitous across its invaded range. Collectively, our results provide empirical evidence that generalist herbivores can alter non-native plant physiology to facilitate invasion.

17.
Ecology ; 97(4): 874-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27220204

ABSTRACT

Non-native, invasive plants are commonly typified by trait strategies associated with high resource demands and plant invasions are often thought to be dependent upon site resource availability or disturbance. However, the invasion of shade-tolerant woody species into deciduous forests of the Eastern United States seems to contradict such generalization, as growth in this ecosystem is strongly constrained by light and, secondarily, nutrient stress. In a factorial manipulation of light and soil nitrogen availability, we established an experimental resource gradient in a secondary deciduous forest to test whether three common, woody, invasive species displayed increased metabolic performance and biomass production compared to six co-occurring woody native species, and whether these predicted differences depend upon resource supply. Using hierarchical Bayesian models of photosynthesis that included leaf trait effects, we found that invasive species exhibited functional strategies associated with higher rates of carbon gain. Further, invader metabolic and growth-related attributes were more responsive to increasing light availability than those of natives, but did not fall below average native responses even in low light. Surprisingly, neither group showed direct trait or growth responses to soil N additions. However, invasive species showed increased photosynthetic nitrogen use efficiencies with decreasing N availability, while that of natives remained constant. Although invader advantage over natives was amplified in higher resource conditions in this forest, our results indicate that some invasive species can maintain physiological advantages over co-occurring natives regardless of resource conditions.


Subject(s)
Forests , Introduced Species , Models, Biological , Plant Leaves/metabolism , Trees/physiology , Bayes Theorem , Nitrogen , Photosynthesis , Plant Transpiration , Trees/growth & development
18.
New Phytol ; 200(2): 523-533, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23815090

ABSTRACT

Studies in disturbed, resource-rich environments often show that invasive plants are more productive than co-occurring natives, but with similar physiological tradeoffs. However, in resource-limited habitats, it is unclear whether native and invasive plants have similar metabolic constraints or if invasive plants are more productive per unit resource cost - that is, use resources more efficiently. Using a common garden to control for environment, we compared leaf physiological traits relating to resource investments, carbon returns, and resource-use efficiencies in 14 native and 18 nonnative invasive species of common genera found in Eastern North American (ENA) deciduous forest understories, where growth is constrained by light and nutrient limitation. Despite greater leaf construction and nitrogen costs, invaders exhibited greater instantaneous photosynthetic energy-use efficiency (PEUE) and marginally greater photosynthetic nitrogen-use efficiency (PNUE). When integrated over leaf lifespan (LL), these differences were magnified. Differences in efficiency were driven by greater productivity per unit leaf investment, as invaders exhibited both greater photosynthetic abilities and longer LL. Our results indicate that woody understory invaders in ENA forests are not constrained to the same degree by leaf-based metabolic tradeoffs as the native understory flora. These strategy differences could be attributable to pre-adaptation in the native range, although other explanations are possible.


Subject(s)
Carbon/metabolism , Magnoliopsida/metabolism , Nitrogen/metabolism , Conservation of Natural Resources , Environment , Introduced Species , Light , Magnoliopsida/growth & development , Magnoliopsida/physiology , Magnoliopsida/radiation effects , Models, Theoretical , Photosynthesis/physiology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Transpiration/physiology , Species Specificity , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...