Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 19(10): e1011568, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37862349

ABSTRACT

Histone ChIP-seq is one of the primary methods for charting the cellular epigenomic landscape, the components of which play a critical regulatory role in gene expression. Analyzing the activity of regulatory elements across datasets and cell types can be challenging due to shifting peak positions and normalization artifacts resulting from, for example, differing read depths, ChIP efficiencies, and target sizes. Moreover, broad regions of enrichment seen in repressive histone marks often evade detection by commonly used peak callers. Here, we present a simple and versatile method for identifying enriched regions in ChIP-seq data that relies on estimating a gamma distribution fit to non-overlapping 5kB genomic bins to establish a global background. We use this distribution to assign a probability of being signal (PBS) between zero and one to each 5 kB bin. This approach, while lower in resolution than typical peak-calling methods, provides a straightforward way to identify enriched regions and compare enrichments among multiple datasets, by transforming the data to values that are universally normalized and can be readily visualized and integrated with downstream analysis methods. We demonstrate applications of PBS for both broad and narrow histone marks, and provide several illustrations of biological insights which can be gleaned by integrating PBS scores with downstream data types.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Histones , Histones/genetics , Histones/metabolism , Chromatin Immunoprecipitation/methods , Genome , Probability , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods
2.
Cell ; 186(7): 1493-1511.e40, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001506

ABSTRACT

Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of 1,635 open-access datasets from four donors (∼30 tissues × âˆ¼15 assays). The datasets are mapped to matched, diploid genomes with long-read phasing and structural variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele-specific activity based only on local nucleotide-sequence context, highlighting the importance of transcription-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, EN-TEx provides rich data and generalizable models for more accurate personal functional genomics.


Subject(s)
Epigenome , Quantitative Trait Loci , Genome-Wide Association Study , Genomics , Phenotype , Polymorphism, Single Nucleotide
3.
Nat Genet ; 54(10): 1504-1513, 2022 10.
Article in English | MEDLINE | ID: mdl-36195755

ABSTRACT

Epigenomic maps identify gene regulatory elements by their chromatin state. However, prevailing short-read sequencing methods cannot effectively distinguish alleles, evaluate the interdependence of elements in a locus or capture single-molecule dynamics. Here, we apply targeted nanopore sequencing to profile chromatin accessibility and DNA methylation on contiguous ~100-kb DNA molecules that span loci relevant to development, immunity and imprinting. We detect promoters, enhancers, insulators and transcription factor footprints on single molecules based on exogenous GpC methylation. We infer relationships among dynamic elements within immune loci, and order successive remodeling events during T cell stimulation. Finally, we phase primary sequence and regulatory elements across the H19/IGF2 locus, uncovering primate-specific features. These include a segmental duplication that stabilizes the imprinting control region and a noncanonical enhancer that drives biallelic IGF2 expression in specific contexts. Our study advances emerging strategies for phasing gene regulatory landscapes and reveals a mechanism that overrides IGF2 imprinting in human cells.


Subject(s)
Genomic Imprinting , RNA, Long Noncoding , Alleles , Animals , Chromatin/genetics , DNA/metabolism , DNA Methylation/genetics , Enhancer Elements, Genetic/genetics , Humans , Insulin-Like Growth Factor II/genetics , RNA, Long Noncoding/genetics , Transcription Factors/genetics
4.
Cell ; 182(6): 1474-1489.e23, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32841603

ABSTRACT

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.


Subject(s)
Chromatin/metabolism , Chromosomes/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/genetics , Cell Division , Cellular Senescence/genetics , Chromatin Immunoprecipitation Sequencing , Chromosomes/genetics , Cohort Studies , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Computational Biology , DNA Methylation/genetics , Epigenomics , HCT116 Cells , Humans , In Situ Hybridization, Fluorescence , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , RNA-Seq , Spatial Analysis , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
5.
SLAS Discov ; 25(5): 434-446, 2020 06.
Article in English | MEDLINE | ID: mdl-32292096

ABSTRACT

The voltage-gated sodium channel Nav1.7 is a genetically validated target for pain; pharmacological blockers are promising as a new class of nonaddictive therapeutics. The search for Nav1.7 subtype selective inhibitors requires a reliable, scalable, and sensitive assay. Previously, we developed an all-optical electrophysiology (Optopatch) Spiking HEK platform to study activity-dependent modulation of Nav1.7 in a format compatible with high-throughput screening. In this study, we benchmarked the Optopatch Spiking HEK assay with an existing validated automated electrophysiology assay on the IonWorks Barracuda (IWB) platform. In a pilot screen of 3520 compounds, which included compound plates from a random library as well as compound plates enriched for Nav1.7 inhibitors, the Optopatch Spiking HEK assay identified 174 hits, of which 143 were confirmed by IWB. The Optopatch Spiking HEK assay maintained the high reliability afforded by traditional fluorescent assays and further demonstrated comparable sensitivity to IWB measurements. We speculate that the Optopatch assay could provide an affordable high-throughput screening platform to identify novel Nav1.7 subtype selective inhibitors with diverse mechanisms of action, if coupled with a multiwell parallel optogenetic recording instrument.


Subject(s)
High-Throughput Screening Assays , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Patch-Clamp Techniques , Voltage-Gated Sodium Channel Blockers/isolation & purification , Animals , CHO Cells , Cricetulus , Electrophysiological Phenomena , Electrophysiology , HEK293 Cells , Humans , NAV1.7 Voltage-Gated Sodium Channel/genetics
6.
Biomicrofluidics ; 11(6): 064103, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29204244

ABSTRACT

The physical characteristics of the T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interaction are known to play a central role in determining T cell function in the initial stages of the adaptive immune response. State-of-the-art assays can probe the kinetics of this interaction with single-molecular-bond resolution, but this precision typically comes at the cost of low throughput, since the complexity of these measurements largely precludes "scaling up." Here, we explore the feasibility of detecting specific TCR-pMHC interactions by flowing T cells past immobilized pMHC and measuring the reduction in cell speed due to the mechanical force of the receptor-ligand interaction. To test this new fluidic measurement modality, we fabricated a microfluidic device in which pMHC-coated beads are immobilized in hydrodynamic traps along the length of a serpentine channel. As T cells flow past the immobilized beads, their change in speed is tracked via microscopy. We validated this approach using two model systems: primary CD8+ T cells from an OT-1 TCR transgenic mouse with beads conjugated with H-2Kb:SIINFEKL, and Jurkat T cells with beads conjugated with anti-CD3 and anti-CD28 antibodies.

7.
Dev Cell ; 36(5): 540-9, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26954548

ABSTRACT

Cells must duplicate their mass in order to proliferate. Glucose and glutamine are the major nutrients consumed by proliferating mammalian cells, but the extent to which these and other nutrients contribute to cell mass is unknown. We quantified the fraction of cell mass derived from different nutrients and found that the majority of carbon mass in cells is derived from other amino acids, which are consumed at much lower rates than glucose and glutamine. While glucose carbon has diverse fates, glutamine contributes most to protein, suggesting that glutamine's ability to replenish tricarboxylic acid cycle intermediates (anaplerosis) is primarily used for amino acid biosynthesis. These findings demonstrate that rates of nutrient consumption are indirectly associated with mass accumulation and suggest that high rates of glucose and glutamine consumption support rapid cell proliferation beyond providing carbon for biosynthesis.


Subject(s)
Amino Acids/metabolism , Carbon/metabolism , Cell Proliferation/physiology , Glucose/metabolism , Glutamic Acid/metabolism , Animals , Cells, Cultured , Citric Acid Cycle/physiology , Glutamine/metabolism , Humans
8.
J Cell Biol ; 212(4): 439-47, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26880201

ABSTRACT

Cytokine regulation of lymphocyte growth and proliferation is essential for matching nutrient consumption with cell state. Here, we examine how cellular biophysical changes that occur immediately after growth factor depletion promote adaptation to reduced nutrient uptake. After growth factor withdrawal, nutrient uptake decreases, leading to apoptosis. Bcl-xL expression prevents cell death, with autophagy facilitating long-term cell survival. However, autophagy induction is slow relative to the reduction of nutrient uptake, suggesting that cells must engage additional adaptive mechanisms to respond initially to growth factor depletion. We describe an acute biophysical response to growth factor withdrawal, characterized by a simultaneous decrease in cell volume and increase in cell density, which occurs before autophagy initiation and is observed in both FL5.12 Bcl-xL cells depleted of IL-3 and primary CD8(+) T cells depleted of IL-2 that are differentiating toward memory cells. The response reduces cell surface area to minimize energy expenditure while conserving biomass, suggesting that the biophysical properties of cells can be regulated to promote survival under conditions of nutrient stress.


Subject(s)
Energy Metabolism , Intercellular Signaling Peptides and Proteins/deficiency , Lymphocytes/metabolism , Adaptation, Physiological , Animals , Apoptosis , Autophagy , Autophagy-Related Protein 7 , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cell Line , Energy Metabolism/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Interleukin-2/deficiency , Interleukin-3/deficiency , Lymphocyte Activation , Lymphocytes/drug effects , Lymphocytes/pathology , Mice , Mice, Transgenic , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Phenotype , RNA Interference , Signal Transduction , Time Factors , Transfection , bcl-X Protein/genetics , bcl-X Protein/metabolism
9.
Sci Rep ; 5: 18542, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26679988

ABSTRACT

The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines.


Subject(s)
Leukocytes, Mononuclear/physiology , Neoplastic Cells, Circulating/chemistry , Animals , Cell Line, Tumor , Cluster Analysis , Humans , Leukocytes/cytology , Leukocytes/physiology , Leukocytes, Mononuclear/cytology , Mice , Mice, Inbred BALB C , Microfluidic Analytical Techniques , Microscopy, Fluorescence , Models, Animal
10.
Biophys J ; 109(8): 1565-73, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26488647

ABSTRACT

Cellular physical properties are important indicators of specific cell states. Although changes in individual biophysical parameters, such as cell size, density, and deformability, during cellular processes have been investigated in great detail, relatively little is known about how they are related. Here, we use a suspended microchannel resonator (SMR) to measure single-cell density, volume, and passage time through a narrow constriction of populations of cells subjected to a variety of environmental stresses. Osmotic stress significantly affects density and volume, as previously shown. In contrast to density and volume, the effect of an osmotic challenge on passage time is relatively small. Deformability, as determined by comparing passage times for cells with similar volume, exhibits a strong dependence on osmolarity, indicating that passage time alone does not always provide a meaningful proxy for deformability. Finally, we find that protein synthesis inhibition, cell-cycle arrest, protein kinase inhibition, and cytoskeletal disruption result in unexpected relationships among deformability, density, and volume. Taken together, our results suggest that by measuring multiple biophysical parameters, one can detect unique characteristics that more specifically reflect cellular behaviors.


Subject(s)
Cell Size , Osmotic Pressure/physiology , Stress, Physiological/physiology , Animals , Cell Line , Cell Size/drug effects , Liver/cytology , Liver/drug effects , Liver/physiology , Mice , Microfluidic Analytical Techniques , Microfluidics , Osmotic Pressure/drug effects , Stress, Physiological/drug effects
11.
Mol Cell ; 57(1): 95-107, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25482511

ABSTRACT

Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.


Subject(s)
Fibroblasts/metabolism , Metabolome/genetics , Nucleotides/metabolism , Pyruvate Kinase/genetics , Animals , Cell Cycle/genetics , Cell Proliferation , DNA/biosynthesis , Embryo, Mammalian , Fibroblasts/cytology , Gene Expression Regulation , Metabolic Networks and Pathways/genetics , Mice , Mice, Knockout , Primary Cell Culture , Pyruvate Kinase/deficiency , Signal Transduction
12.
Lab Chip ; 14(3): 569-576, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24296901

ABSTRACT

Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210.


Subject(s)
Cell Size , Microfluidic Analytical Techniques/methods , Animals , Cell Count , Cell Line, Tumor , Humans , Mice , Microfluidic Analytical Techniques/instrumentation , Povidone/chemistry , Silicon Dioxide/chemistry
13.
PLoS One ; 8(7): e67590, 2013.
Article in English | MEDLINE | ID: mdl-23844039

ABSTRACT

We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.


Subject(s)
DNA/analysis , Lipids/analysis , Proteins/analysis , RNA/analysis , Water/metabolism , Animals , Biological Transport , Deuterium Exchange Measurement , Erythrocytes/chemistry , Escherichia coli/chemistry , Fibroblasts/chemistry , Humans , Mice , Saccharomyces cerevisiae/chemistry , T-Lymphocytes/chemistry
14.
Proc Natl Acad Sci U S A ; 110(19): 7580-5, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23610435

ABSTRACT

Metastasis requires the penetration of cancer cells through tight spaces, which is mediated by the physical properties of the cells as well as their interactions with the confined environment. Various microfluidic approaches have been devised to mimic traversal in vitro by measuring the time required for cells to pass through a constriction. Although a cell's passage time is expected to depend on its deformability, measurements from existing approaches are confounded by a cell's size and its frictional properties with the channel wall. Here, we introduce a device that enables the precise measurement of (i) the size of a single cell, given by its buoyant mass, (ii) the velocity of the cell entering a constricted microchannel (entry velocity), and (iii) the velocity of the cell as it transits through the constriction (transit velocity). Changing the deformability of the cell by perturbing its cytoskeleton primarily alters the entry velocity, whereas changing the surface friction by immobilizing positive charges on the constriction's walls primarily alters the transit velocity, indicating that these parameters can give insight into the factors affecting the passage of each cell. When accounting for cell buoyant mass, we find that cells possessing higher metastatic potential exhibit faster entry velocities than cells with lower metastatic potential. We additionally find that some cell types with higher metastatic potential exhibit greater than expected changes in transit velocities, suggesting that not only the increased deformability but reduced friction may be a factor in enabling invasive cancer cells to efficiently squeeze through tight spaces.


Subject(s)
Cell Shape , Microfluidic Analytical Techniques/instrumentation , Neoplasms/pathology , Animals , Biosensing Techniques , Cell Line, Tumor , Cell Size , Cytoskeleton/metabolism , Fibroblasts/cytology , Friction , Humans , Mice , Microfluidics , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Polyethylene Glycols/chemistry , Surface Properties
15.
Biores Open Access ; 1(1): 34-40, 2012 Jan.
Article in English | MEDLINE | ID: mdl-23515363

ABSTRACT

Research in the last few years have focused on the use of three-dimensional (3D) fibrin construct to deliver growth factors and cells. Three-dimensional construct permeability and porosity are important aspects for proper nutrient uptake, gas exchange, and waste removal-factors that are critical for cell growth and survival. We have previously reported that the mechanical strength (stiffness) of 3D fibrin constructs is dependent on the fibrinogen and thrombin concentration. In this study, we established two new in vitro models to examine how fibrin composition affects the final 3D fibrin construct permeability and pore size; thereby, influencing the diffusivity of macromolecules throughout the network of fibrin fibrils. Flow measurements of both liquid and fluoresceinated-dextran microparticles are conducted to calculate the permeability and pore size of 3D fibrin constructs of different fibrinogen and thrombin concentrations. Similarly, the diffusivity of liquid and fluoresceinated-dextran microparticles through these 3D fibrin constructs are determined through diffusion models. Data from these studies show that the structural permeability and pore size of 3D fibrin constructs directly correlate to fibrinogen and thrombin concentration in the final 3D fibrin construct. More specifically, at a constant thrombin concentration of 2 or 5 µ/mL, pore size of the 3D fibrin constructs is dependent on fibrinogen if the concentration is 5 mg/mL and to a lesser extent if the concentration is 10-15 mg/mL. These findings suggest that fibrin's diffusive property can be manipulated to fabricate 3D constructs that are optimized for cellular growth, protein transport, and for the controlled delivery of bioactive molecules such as growth factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...