Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 755(Pt 2): 142500, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33049527

ABSTRACT

Anthropogenic landscape disturbances are known to alter, destroy, and fragment habitat, which typically leads to biodiversity loss. The effects of landscape disturbance generally vary among species and depend on the nature of the disturbances, which may interact and result in synergistic effects. Western Canada's oil sands region experiences disturbances from forestry and energy sector activities as well as municipal and transportation infrastructure. The effects of those disturbances on single species have been studied and have been implicated in declines of the boreal woodland caribou (Rangifer tarandus caribou). Yet, the specific responses of the mammal community, and of functional groups such as prey and predators, to those interacting disturbances are still poorly known. We investigated the responses of black bear, grey wolf, coyote, fisher, lynx, red fox, American red squirrel, white-tailed deer, moose, caribou, and snowshoe hare to both natural habitat and disturbance associated with anthropogenic features within Alberta's northeast boreal forest. We used a novel community-level modelling framework on three years of camera-trap data collected in an oil sands landscape. This framework allowed us to identify the natural and anthropogenic features which explained the most variation in occurrence frequency among functional groups, as well as compare responses to linear and non-linear anthropogenic disturbance. Occurrence frequency by predators was better explained by anthropogenic features than by natural habitat. Both linear and non-linear anthropogenic features helped explain occurrence frequency by prey and predators, although the effects differed in magnitude and spatial scale. To better conserve boreal biodiversity, management actions should extend beyond a focus on caribou and wolves and aim to restore habitat across a diversity of anthropogenic disturbances and monitor the dynamics of the entire mammal community.


Subject(s)
Deer , Reindeer , Wolves , Animals , Ecosystem , Oil and Gas Fields , Taiga
2.
PeerJ ; 4: e2814, 2016.
Article in English | MEDLINE | ID: mdl-28028479

ABSTRACT

The science of ecosystem service (ES) mapping has become increasingly sophisticated over the past 20 years, and examples of successfully integrating ES into management decisions at national and sub-national scales have begun to emerge. However, increasing model sophistication and accuracy-and therefore complexity-may trade-off with ease of use and applicability to real-world decision-making contexts, so it is vital to incorporate the lessons learned from implementation efforts into new model development. Using successful implementation efforts for guidance, we developed an integrated ES modelling system to quantify several ecosystem services: forest timber production and carbon storage, water purification, pollination, and biodiversity. The system is designed to facilitate uptake of ES information into land-use decisions through three principal considerations: (1) using relatively straightforward models that can be readily deployed and interpreted without specialized expertise; (2) using an agent-based modelling framework to enable the incorporation of human decision-making directly within the model; and (3) integration among all ES models to simultaneously demonstrate the effects of a single land-use decision on multiple ES. We present an implementation of the model for a major watershed in Alberta, Canada, and highlight the system's capabilities to assess a suite of ES under future management decisions, including forestry activities under two alternative timber harvest strategies, and through a scenario modelling analysis exploring different intensities of hypothetical agricultural expansion. By using a modular approach, the modelling system can be readily expanded to evaluate additional ecosystem services or management questions of interest in order to guide land-use decisions to achieve socioeconomic and environmental objectives.

3.
Ann N Y Acad Sci ; 1185: 39-53, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20146761

ABSTRACT

Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.


Subject(s)
Conservation of Natural Resources , Ecology/economics , Models, Theoretical , Conservation of Natural Resources/methods , Decision Making , Decision Trees , Environment , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...