Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 306(1): 5-28, 2023 01.
Article in English | MEDLINE | ID: mdl-35578743

ABSTRACT

Antlers are the most conspicuous trait of cervids and have been used in the past to establish a classification of their fossil and living representatives. Since the availability of molecular data, morphological characters have generally become less important for phylogenetic reconstructions. In recent years, however, the appreciation of morphological characters has increased, and they are now more frequently used in addition to molecular data to reconstruct the evolutionary history of cervids. A persistent challenge when using antler traits in deer systematics is finding a consensus on the homology of structures. Here, we review early and recent attempts to homologize antler structures and objections to this approach, compare and evaluate recent advances on antler homologies, and critically discuss these different views in order to offer a basis for further scientific exchange on the topic. We further present some developmental aspects of antler branching patterns and discuss their potential for reconstructing cervid systematics. The use of heterogeneous data for reconstructing phylogenies has resulted in partly conflicting hypotheses on the systematic position of certain cervid species, on which we also elaborate here. We address current discussions on the use of different molecular markers in cervid systematics and the question whether antler morphology and molecular data can provide a consistent picture on the evolutionary history of cervids. In this context, special attention is given to the antler morphology and the systematic position of the enigmatic Pere David's deer (Elaphurus davidianus).


Subject(s)
Deer , Animals , Phylogeny , Fossils
2.
J Exp Biol ; 224(Pt 5)2021 03 04.
Article in English | MEDLINE | ID: mdl-33536307

ABSTRACT

Extreme phenotypic polymorphism is an oft-cited example of evolutionary theory in practice. Although these morphological variations are assumed to be adaptive, few studies have biomechanically tested such hypotheses. Pyrenestes ostrinus (the African seedcracker finch) shows an intraspecific polymorphism in beak size and shape that is entirely diet driven and allelically determined. Three distinct morphs feed upon soft sedge seeds during times of abundance, but during lean times switch to specializing on three different species of sedge seeds that differ significantly in hardness. Here, we test the hypothesis that beak morphology is directly related to consuming seeds of different hardness. We used a novel experimental analysis to test how beak morphology affects the efficiency of cracking sedge seeds of variable hardness, observing that neither mandibular ramus width nor crushing surface morphology had significant effects on the ability to crack different seed types. It is likely that feeding performance is correlated with other aspects of beak size and shape, such as beak depth and strength, muscle force or gape. Our results highlight how even seemingly straightforward examples of adaptive selection in nature can be complex in practice.


Subject(s)
Beak , Finches , Animals , Biological Evolution , Diet , Polymorphism, Genetic
3.
PeerJ ; 8: e8114, 2020.
Article in English | MEDLINE | ID: mdl-32110477

ABSTRACT

Systematic relationships of cervids have been controversial for decades. Despite new input from molecular systematics, consensus could only be partially reached. The initial, gross (sub) classification based on morphology and comparative anatomy was mostly supported by molecular data. The rich fossil record of cervids has never been extensively tested in phylogenetic frameworks concerning potential systematic relationships of fossil cervids to extant cervids. The aim of this work was to investigate the systematic relationships of extant and fossil cervids using molecular and morphological characters and make implications about their evolutionary history based on the phylogenetic reconstructions. To achieve these objectives, molecular data were compiled consisting of five nuclear markers and the complete mitochondrial genome of 50 extant and one fossil cervids. Several analyses using different data partitions, taxon sampling, partitioning schemes, and optimality criteria were undertaken. In addition, the most extensive morphological character matrix for such a broad cervid taxon sampling was compiled including 168 cranial and dental characters of 41 extant and 29 fossil cervids. The morphological and molecular data were analysed in a combined approach and other comprehensive phylogenetic reconstructions. The results showed that most Miocene cervids were more closely related to each other than to any other cervids. They were often positioned between the outgroup and all other cervids or as the sister taxon to Muntiacini. Two Miocene cervids were frequently placed within Muntiacini. Plio- and Pleistocene cervids could often be affiliated to Cervini, Odocoileini or Capreolini. The phylogenetic analyses provide new insights into the evolutionary history of cervids. Several fossil cervids could be successfully related to living representatives, confirming previously assumed affiliations based on comparative morphology and introducing new hypotheses. New systematic relationships were observed, some uncertainties persisted and resolving systematics within certain taxa remained challenging.

4.
J Morphol ; 278(2): 182-202, 2017 02.
Article in English | MEDLINE | ID: mdl-27859491

ABSTRACT

Antlers are unique appendages. They are shed and rebuilt at intervals, and are synapomorphic for all living Cervidae (except for the Chinese water deer, Hydropotes inermis, in which they have presumably been lost). The antlerogenic process is controlled by a complex interaction of fluctuating levels of several hormones, most importantly testosterone. The oldest antler remains are recorded from the early Miocene; these have been interpreted as non-deciduous appendages because of supposed permanent skin coverage and the lack of a burr (a well-developed osseous protuberance around the base of the antler, which is always present in extant cervids). The aim of this study is to test the hypothesis that antler shedding was possible in these early Miocene cervids. Antlers of all extant and eight Miocene cervid genera, including burr-less antler fragments of the earliest cervids Procervulus, Ligeromeryx, and Lagomeryx were studied. An extensive comparative morphological analysis of external features of the antler, and of the abscission area and the base of the antler in particular, was undertaken. The results indicate that a regular, porous, and rugose abscission surface at the proximal end of the antler indicates antler shedding in both living and fossil cervids. The antler shedding mechanism must therefore have already been present in all early/mid Miocene cervid genera included in this study. On this basis, it is suggested that the presence of a burr is not prerequisite in order to shed antlers, that the presence of perpetual antlers has not yet been verified, and that the process of shedding and regeneration developed with the first appearance of these organs. This insight is particularly important for the systematic classification of early Miocene species as Cervidae, because the absence of the antler shedding and rebuilding mechanism would exclude them from the taxon Cervidae and from any relationship with extant cervids. J. Morphol. 278:182-202, 2017. © 2016 Wiley Periodicals,Inc.


Subject(s)
Antlers/anatomy & histology , Antlers/physiology , Deer/anatomy & histology , Deer/physiology , Regeneration/physiology , Animals , Male
5.
PeerJ ; 4: e2307, 2016.
Article in English | MEDLINE | ID: mdl-27602278

ABSTRACT

Cervid phylogenetics has been puzzling researchers for over 150 years. In recent decades, molecular systematics has provided new input for both the support and revision of the previous results from comparative anatomy but has led to only partial consensus. Despite all of the efforts to reach taxon-wide species sampling over the last two decades, a number of cervid species still lack molecular data because they are difficult to access in the wild. By extracting ancient DNA from museum specimens, in this study, we obtained partial mitochondrial cytochrome b gene sequences for Mazama bricenii, Mazama chunyi, Muntiacus atherodes, Pudu mephistophiles, and Rusa marianna, including three holotypes. These new sequences were used to enrich the existing mitochondrial DNA alignments and yielded the most taxonomically complete data set for cervids to date. Phylogenetic analyses provide new insights into the evolutionary history of these five species. However, systematic uncertainties within Muntiacus persist and resolving phylogenetic relationships within Pudu and Mazama remain challenging.

SELECTION OF CITATIONS
SEARCH DETAIL
...