Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 124: 838-845, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30496861

ABSTRACT

In this study, polysaccharide-based hydrogel wound dressings containing in situ synthesized gold nanoparticles (AuNPs) were prepared by using a simple, fast and green protocol. The prepared hydrogels were characterized with UV-vis and infrared spectroscopy (FT-IR), and dynamic light scattering (DLS). The rheological and swelling properties and the feasibility to scale-up the wound dressing production from the lamination of the prepared hydrogel on non-woven fabric were also investigated. UV-vis spectra confirmed the AuNPs synthesis and the DLS results exhibited an increase in the size of AuNPs with increasing the initial Au3+ concentration. The rheological analysis showed that the augmentation of the initial Au3+ concentration reduces the gel viscosity and gelling temperature. Besides, the FT-IR spectra revealed that the AuNPs hinder the intermolecular interactions between kappa-carrageenan (κCG) and locust bean gum (LBG). The feasibility of scale-up the wound dressing production from the prepared hydrogel was confirmed through the lamination tests.


Subject(s)
Bandages , Carrageenan/chemistry , Galactans/chemistry , Gold/chemistry , Hydrogels/chemistry , Mannans/chemistry , Metal Nanoparticles/chemistry , Plant Gums/chemistry , Humans , Metal Nanoparticles/ultrastructure , Particle Size , Rheology , Temperature , Viscosity , Wettability
2.
Carbohydr Polym ; 206: 362-370, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30553333

ABSTRACT

A smart wound dressing based on carrageenan (κC), locust bean gum (LBG), and cranberry extract (CB) for monitoring bacterial wound infections was developed and characterized using UV-vis spectroscopy, FT-IR, and SEM. The mechanical, swelling, cytotoxic and pH sensor properties were also investigated. UV-vis spectra demonstrated that the obtained κC:LBG:CB hydrogel film exhibited a visible change of colors as it was immersed in PBS solution pH 5.0, 7.3 and 9.0. The spectra of FT-IR suggested that chemical interactions had occurred between κC and CB extract. The obtained κC:LBG:CB hydrogel film exhibited adequate mechanical properties and a swelling behavior dependent on pH. Cytotoxicity tests indicated that κC:LBG:CB hydrogel film had dose-dependent cytotoxicity against NIH 3T3 fibroblast cells. The in vitro studies using Staphylococcus aureus and Pseudomonas aeruginosa demonstrated that the color changes of the κC:LBG:CB hydrogel film could be observed by naked eyes, confirming the potential use of the obtained hydrogel film as a visual system for monitoring bacterial wound infections.


Subject(s)
Bacterial Infections/diagnosis , Bandages , Hydrogels/chemistry , Indicators and Reagents/pharmacology , Plant Extracts/pharmacology , Wound Infection/diagnosis , Animals , Anthocyanins/chemistry , Anthocyanins/pharmacology , Anthocyanins/toxicity , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Carrageenan/chemistry , Carrageenan/toxicity , Color , Elastic Modulus , Galactans/chemistry , Galactans/toxicity , Hydrogels/toxicity , Hydrogen-Ion Concentration , Indicators and Reagents/chemistry , Indicators and Reagents/toxicity , Mannans/chemistry , Mannans/toxicity , Mice , NIH 3T3 Cells , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Gums/chemistry , Plant Gums/toxicity , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Tensile Strength , Vaccinium macrocarpon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...