Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 93(3): 032307, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27078366

ABSTRACT

The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.


Subject(s)
Models, Theoretical , Motion , Robotics , Rotation
2.
Article in English | MEDLINE | ID: mdl-25353557

ABSTRACT

In this paper we develop a perturbation method to predict the rate of occurrence of rare events for singularly perturbed stochastic systems using a probability density function approach. In contrast to a stochastic normal form approach, we model rare event occurrences due to large fluctuations probabilistically and employ a WKB ansatz to approximate their rate of occurrence. This results in the generation of a two-point boundary value problem that models the interaction of the state variables and the most likely noise force required to induce a rare event. The resulting equations of motion of describing the phenomenon are shown to be singularly perturbed. Vastly different time scales among the variables are leveraged to reduce the dimension and predict the dynamics on the slow manifold in a deterministic setting. The resulting constrained equations of motion may be used to directly compute an exponent that determines the probability of rare events. To verify the theory, a stochastic damped Duffing oscillator with three equilibrium points (two sinks separated by a saddle) is analyzed. The predicted switching time between states is computed using the optimal path that resides in an expanded phase space. We show that the exponential scaling of the switching rate as a function of system parameters agrees well with numerical simulations. Moreover, the dynamics of the original system and the reduced system via center manifolds are shown to agree in an exponentially scaling sense.

SELECTION OF CITATIONS
SEARCH DETAIL
...