Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 13(636)2020 06 16.
Article in English | MEDLINE | ID: mdl-32546545

ABSTRACT

Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) is an epigenetic regulator in which polymorphisms cause the human developmental disorder, Bosma arhinia micropthalmia syndrome, and the degenerative disease, facioscapulohumeral muscular dystrophy. SMCHD1 is considered a noncanonical SMC family member because its hinge domain is C-terminal, because it homodimerizes rather than heterodimerizes, and because SMCHD1 contains a GHKL-type, rather than an ABC-type ATPase domain at its N terminus. The hinge domain has been previously implicated in chromatin association; however, the underlying mechanism involved and the basis for SMCHD1 homodimerization are unclear. Here, we used x-ray crystallography to solve the three-dimensional structure of the Smchd1 hinge domain. Together with structure-guided mutagenesis, we defined structural features of the hinge domain that participated in homodimerization and nucleic acid binding, and we identified a functional hotspot required for chromatin localization in cells. This structure provides a template for interpreting the mechanism by which patient polymorphisms within the SMCHD1 hinge domain could compromise function and lead to facioscapulohumeral muscular dystrophy.


Subject(s)
Chromosomal Proteins, Non-Histone/chemistry , Protein Multimerization , Animals , Chromosomal Proteins, Non-Histone/genetics , Crystallography, X-Ray , Mice , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Protein Domains , Protein Structure, Quaternary , Siblings
3.
Cancer Cell ; 29(2): 145-58, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26859455

ABSTRACT

Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant.


Subject(s)
Antineoplastic Agents/therapeutic use , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/physiology , Leukemia/drug therapy , Mitochondrial Proteins/physiology , Molecular Mimicry , Protein Serine-Threonine Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins , Humans , Mice , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...