Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(6): 066402, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625042

ABSTRACT

We performed spin-, time- and angle-resolved extreme ultraviolet photoemission spectroscopy of excitons prepared by photoexcitation of inversion-symmetric 2H-WSe_{2} with circularly polarized light. The very short probing depth of XUV photoemission permits selective measurement of photoelectrons originating from the top-most WSe_{2} layer, allowing for direct measurement of hidden spin polarization of bright and momentum-forbidden dark excitons. Our results reveal efficient chiroptical control of bright excitons' hidden spin polarization. Following optical photoexcitation, intervalley scattering between nonequivalent K-K^{'} valleys leads to a decay of bright excitons' hidden spin polarization. Conversely, the ultrafast formation of momentum-forbidden dark excitons acts as a local spin polarization reservoir, which could be used for spin injection in van der Waals heterostructures involving multilayer transition metal dichalcogenides.

2.
Article in English | MEDLINE | ID: mdl-32830773

ABSTRACT

Cobalt ferrite ultrathin films with the inverse spinel structure are among the best candidates for spin filtering at room temperature. High-quality epitaxial CoFe2O4 films about 4 nm thick have been fabricated on Ag(001) following a three-step method: an ultrathin metallic CoFe2 alloy was first grown in coherent epitaxy on the substrate and then treated twice with O2, first at room temperature and then during annealing. The epitaxial orientation and the surface, interface and film structure were resolved using a combination of low-energy electron diffraction, scanning tunnelling microscopy, Auger electron spectroscopy and in situ grazing-incidence X-ray diffraction. A slight tetragonal distortion was observed, which should drive the easy magnetization axis in-plane due to the large magneto-elastic coupling of such a material. The so-called inversion parameter, i.e. the Co fraction occupying octahedral sites in the ferrite spinel structure, is a key element for its spin-dependent electronic gap. It was obtained through in situ resonant X-ray diffraction measurements collected at both the Co and Fe K edges. The data analysis was performed using FDMNES, an ab initio program already extensively used to simulate X-ray absorption spectroscopy, and shows that the Co ions are predominantly located on octahedral sites with an inversion parameter of 0.88 (5). Ex situ X-ray photoelectron spectroscopy gives an estimation in accordance with the values obtained through diffraction analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...