Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 391
Filter
1.
RSC Chem Biol ; 5(7): 640-651, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966672

ABSTRACT

The post-translational modification (PTM) ADP-ribosylation plays an important role in cell signalling and regulating protein function and has been implicated in the development of multiple diseases, including breast and ovarian cancers. Studying the underlying mechanisms through which this PTM contributes towards disease development, however, has been hampered by the lack of appropriate tools for reliable identification of physiologically relevant ADP-ribosylated proteins in a live-cell environment. Herein, we explore the application of an alkyne-tagged proprobe, 6Yn-ProTide-Ad (6Yn-Pro) as a chemical tool for the identification of intracellular ADP-ribosylated proteins through metabolic labelling. We applied targeted metabolomics and chemical proteomics in HEK293T cells treated with 6Yn-Pro to demonstrate intracellular metabolic conversion of the probe into ADP-ribosylation cofactor 6Yn-NAD+, and subsequent labelling and enrichment of PARP1 and multiple known ADP-ribosylated proteins in cells under hydrogen peroxide-induced stress. We anticipate that the approach and methodology described here will be useful for future identification of novel intracellular ADP-ribosylated proteins.

2.
Curr Opin Chem Biol ; 81: 102498, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981158
3.
J Clin Med ; 13(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38892805

ABSTRACT

Background: Refractive errors, including myopia, hyperopia, and astigmatism, are the leading causes of visual impairment in school-aged children and can significantly impact their academic performance and quality of life. This study aimed to assess the prevalence of refractive errors among school children from economically disadvantaged areas in Northwest México, using a consistent methodology to facilitate comparison with global data. Methods: We adopted the Refractive Error Study in Children (RESC) protocol by the World Health Organization to examine the prevalence of myopia, hyperopia, and astigmatism. The study comprised a systematic sampling of children aged 6 to 18 years from diverse schools in Northwest México. Trained optometrists conducted visual acuity testing and autorefraction, while ophthalmologists performed cycloplegic refraction to ensure accuracy. Results: The study found a myopia (SE ≤-1.50 D at least one eye) prevalence of 14.55% (95% CI: 13.27-15.91), with a higher incidence in females (6.92%) compared to males (6.00%) in at least one eye. Hyperopia (SE ≥ +1.00 D at least one eye) was less common, at 3.23% (95% CI: 2.61-3.95), with a slightly higher occurrence in males in at least one eye. Astigmatism (Cylinder ≥ 0.75 D at least one eye) was present in 18.63% (95% CI: 17.21-20.12) of the students in at least one eye, with no significant difference between genders. These findings are consistent with other studies in regions such as Puerto Rico and Iran, indicating widespread refractive error issues among schoolchildren. Conclusions: The high prevalence of refractive errors, particularly myopia and astigmatism, highlights the critical need for regular vision screenings in schools and the implementation of public health interventions to provide corrective eyewear. Our study confirms the importance of utilizing standardized methodologies like the RESC protocol to compare refractive error prevalence across different geographical and socio-economic contexts, thereby informing global public health strategies.

4.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38854047

ABSTRACT

High resolution retinal imaging paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of activity dependent calcium changes in retinal ganglion cells (RGCs) at single cell resolution in the living eye. The inner limiting membrane (ILM) is a barrier for viral vectors, restricting transduction to a ring of RGCs serving the fovea in both humans and non-human primates (NHP). We evaluate peeling the ILM prior to intravitreal injection as a strategy to expand calcium imaging beyond the fovea in the NHP eye in vivo. Five Macaca fascicularis eyes (age 3-10y; n=3 individuals; 2M, 1F) underwent vitrectomy and 5 to 6-disc diameter ILM peel centered on the fovea prior to intravitreal delivery of 7m8:SNCG:GCaMP8s. Calcium responses from RGCs were recorded using a fluorescence adaptive optics scanning laser ophthalmoscope. In all eyes GCaMP was expressed throughout the peeled area, representing a mean 8-fold enlargement in area of expression relative to a control eye. Calcium recordings were obtained up to 11 degrees from the foveal center. RGC responses were comparable to the fellow control eye and showed no significant decrease over the 6 months post ILM peel, suggesting that RGC function was not compromised by the surgical procedure. In addition, we demonstrate that activity can be recorded directly from the retinal nerve fiber layer. This approach will be valuable for a range of applications in visual neuroscience including pre-clinical evaluation of retinal function, detecting vision loss, and assessing the impact of therapeutic interventions.

5.
iScience ; 27(6): 110146, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904066

ABSTRACT

The ancestral gamete fusion protein, HAP2/GCS1, plays an essential role in fertilization in a broad range of taxa. To identify factors that may regulate HAP2/GCS1 activity, we screened mutants of the ciliate Tetrahymena thermophila for behaviors that mimic Δhap2/gcs1 knockout phenotypes in this species. Using this approach, we identified two new genes, GFU1 and GFU2, whose products are necessary for membrane pore formation following mating type recognition and adherence. GFU2 is predicted to be a single-pass transmembrane protein, while GFU1, though lacking obvious transmembrane domains, has the potential to interact directly with membrane phospholipids in the cytoplasm. Like Tetrahymena HAP2/GCS1, expression of GFU1 is required in both cells of a mating pair for efficient fusion to occur. To explain these bilateral requirements, we propose a model that invokes cooperativity between the fusion machinery on apposed membranes of mating cells and accounts for successful fertilization in Tetrahymena's multiple mating type system.

7.
JAMA Netw Open ; 7(5): e2412040, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780942

ABSTRACT

Importance: Prenatal exposure to ubiquitous endocrine-disrupting chemicals (EDCs) may increase the risk of metabolic syndrome (MetS) in children, but few studies have studied chemical mixtures or explored underlying protein and metabolic signatures. Objective: To investigate associations of prenatal exposure to EDC mixtures with MetS risk score in children and identify associated proteins and metabolites. Design, Setting, and Participants: This population-based, birth cohort study used data collected between April 1, 2003, and February 26, 2016, from the Human Early Life Exposome cohort based in France, Greece, Lithuania, Norway, Spain, and the UK. Eligible participants included mother-child pairs with measured prenatal EDC exposures and complete data on childhood MetS risk factors, proteins, and metabolites. Data were analyzed between October 2022 and July 2023. Exposures: Nine metals, 3 organochlorine pesticides, 5 polychlorinated biphenyls, 2 polybrominated diphenyl ethers (PBDEs), 5 perfluoroalkyl substances (PFAS), 10 phthalate metabolites, 3 phenols, 4 parabens, and 4 organophosphate pesticide metabolites measured in urine and blood samples collected during pregnancy. Main Outcomes and Measures: At 6 to 11 years of age, a composite MetS risk score was constructed using z scores of waist circumference, systolic and diastolic blood pressures, triglycerides, high-density lipoprotein cholesterol, and insulin levels. Childhood levels of 44 urinary metabolites, 177 serum metabolites, and 35 plasma proteins were quantified using targeted methods. Associations were assessed using bayesian weighted quantile sum regressions applied to mixtures for each chemical group. Results: The study included 1134 mothers (mean [SD] age at birth, 30.7 [4.9] years) and their children (mean [SD] age, 7.8 [1.5] years; 617 male children [54.4%] and 517 female children [45.6%]; mean [SD] MetS risk score, -0.1 [2.3]). MetS score increased per 1-quartile increase of the mixture for metals (ß = 0.44; 95% credible interval [CrI], 0.30 to 0.59), organochlorine pesticides (ß = 0.22; 95% CrI, 0.15 to 0.29), PBDEs (ß = 0.17; 95% CrI, 0.06 to 0.27), and PFAS (ß = 0.19; 95% CrI, 0.14 to 0.24). High-molecular weight phthalate mixtures (ß = -0.07; 95% CrI, -0.10 to -0.04) and low-molecular weight phthalate mixtures (ß = -0.13; 95% CrI, -0.18 to -0.08) were associated with a decreased MetS score. Most EDC mixtures were associated with elevated proinflammatory proteins, amino acids, and altered glycerophospholipids, which in turn were associated with increased MetS score. Conclusions and Relevance: This cohort study suggests that prenatal exposure to EDC mixtures may be associated with adverse metabolic health in children. Given the pervasive nature of EDCs and the increase in MetS, these findings hold substantial public health implications.


Subject(s)
Endocrine Disruptors , Metabolic Syndrome , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology , Metabolic Syndrome/epidemiology , Metabolic Syndrome/chemically induced , Child , Male , Endocrine Disruptors/adverse effects , Endocrine Disruptors/urine , Risk Factors , Environmental Pollutants/urine , Environmental Pollutants/blood , Environmental Pollutants/adverse effects , Adult , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Cohort Studies , Birth Cohort
8.
Arch Toxicol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755480

ABSTRACT

The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis. MAT2A and its liver- and pancreas-specific isoform, MAT1A, generate the universal methyl donor S-adenosylmethionine (SAM) from ATP and methionine. Given the pleiotropic role SAM plays in methylation of diverse substrates, characterising the extent of SAM depletion and downstream perturbations following MAT2A/MAT1A inhibition (MATi) is critical for safety assessment. We have assessed in vivo target engagement and the resultant systemic phenotype using multi-omic tools to characterise response to a MAT2A inhibitor (AZ'9567). We observed significant SAM depletion and extensive methionine accumulation in the plasma, liver, brain and heart of treated rats, providing the first assessment of both global SAM depletion and evidence of hepatic MAT1A target engagement. An integrative analysis of multi-omic data from liver tissue identified broad perturbations in pathways covering one-carbon metabolism, trans-sulfuration and lipid metabolism. We infer that these pathway-wide perturbations represent adaptive responses to SAM depletion and confer a risk of oxidative stress, hepatic steatosis and an associated disturbance in plasma and cellular lipid homeostasis. The alterations also explain the dramatic increase in plasma and tissue methionine, which could be used as a safety and PD biomarker going forward to the clinic.

9.
Appl Spectrosc ; : 37028241255150, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775045

ABSTRACT

Fluorescence spectroscopy is an attractive candidate for analyzing samples of nylon. Impurities within the polymers formed during the synthesis and processing of nylons give rise to the observed fluorescence, allowing for nylons to be analyzed based on their impurities. Nylons from the same source are expected to display similar fluorescence profiles, and nylons with different fluorescence are expected to be from different sources. This paper investigates an important case where different nylons displayed similar fluorescence, preventing easy discrimination. Samples of Nylon 6 and Nylon 6/12 had visually indistinguishable excitation-emission matrices (EEM), excitation spectra, fluorescence spectra, and synchronous fluorescence spectra at larger Δλ. By collecting synchronous fluorescence spectra at smaller Δλ, additional features in the fluorescence profiles were identified that allowed for some discrimination between the two nylons. Combining the EEM and synchronous fluorescence data with chemometric algorithms provided a clearer differentiation between the two nylons. parallel factor analysis, principal component analysis, and common dimension partial least squares (ComDim-PLS) showed two distinct clusters in the data, with ComDim-PLS providing the greatest distinction between the clusters. The loadings revealed the variables of interest to the ComDim-PLS were the 400 nm and 335 nm bands for all synchronous fluorescence spectra, the 460 nm and 310 nm bands for the Δλ = 20 nm and Δλ = 30 nm synchronous fluorescence spectra, and the 440 nm band for the Δλ = 20 nm synchronous fluorescence spectra. The linear discriminant analysis performed with the PLS data yielded a classification accuracy of 95% with the EEM data and 100% with the synchronous fluorescence data, displaying the power of this technique to differentiate two different nylons with visually indistinguishable fluorescence spectra.

10.
J Virol ; : e0006624, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814068

ABSTRACT

COVID-19 can cause neurological symptoms such as fever, dizziness, and nausea. However, such neurological symptoms of SARS-CoV-2 infection have been hardly assessed in mouse models. In this study, we infected two commonly used wild-type mouse lines (C57BL/6J and 129/SvEv) and a 129S calcitonin gene-related peptide (αCGRP) null-line with mouse-adapted SARS-CoV-2 and demonstrated neurological signs including fever, dizziness, and nausea. We then evaluated whether a CGRP receptor antagonist, olcegepant, a "gepant" antagonist used in migraine treatment, could mitigate acute neuroinflammatory and neurological signs of SARS-COV-2 infection. First, we determined whether CGRP receptor antagonism provided protection from permanent weight loss in older (>18 m) C57BL/6J and 129/SvEv mice. We also observed acute fever, dizziness, and nausea in all older mice, regardless of treatment. In both wild-type mouse lines, CGRP antagonism reduced acute interleukin 6 (IL-6) levels with virtually no IL-6 release in mice lacking αCGRP. These findings suggest that migraine inhibitors such as those blocking CGRP receptor signaling protect against acute IL-6 release and subsequent inflammatory events after SARS-CoV-2 infection, which may have repercussions for related pandemic or endemic coronavirus outbreaks.IMPORTANCECoronavirus disease (COVID-19) can cause neurological symptoms such as fever, headache, dizziness, and nausea. However, such neurological symptoms of severe acute respiratory syndrome CoV-2 (SARS-CoV-2) infection have been hardly assessed in mouse models. In this study, we first infected two commonly used wild-type mouse lines (C57BL/6J and 129S) with mouse-adapted SARS-CoV-2 and demonstrated neurological symptoms including fever and nausea. Furthermore, we showed that the migraine treatment drug olcegepant could reduce long-term weight loss and IL-6 release associated with SARS-CoV-2 infection. These findings suggest that a migraine blocker can be protective for at least some acute SARS-CoV-2 infection signs and raise the possibility that it may also impact long-term outcomes.

11.
Clin Cancer Res ; 30(11): 2433-2443, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578610

ABSTRACT

PURPOSE: Transarterial chemoembolization (TACE) may prime adaptive immunity and enhance immunotherapy efficacy. PETAL evaluated safety, preliminary activity of TACE plus pembrolizumab and explored mechanisms of efficacy. PATIENTS AND METHODS: Patients with liver-confined hepatocellular carcinoma (HCC) were planned to receive up to two rounds of TACE followed by pembrolizumab 200 mg every 21 days commencing 30 days post-TACE until disease progression or unacceptable toxicity for up to 1 year. Primary endpoint was safety, with assessment window of 21 days from pembrolizumab initiation. Secondary endpoints included progression-free survival (PFS) and evaluation of tumor and host determinants of response. RESULTS: Fifteen patients were included in the safety and efficacy population: 73% had nonviral cirrhosis; median age was 72 years. Child-Pugh class was A in 14 patients. Median tumor size was 4 cm. Ten patients (67%) received pembrolizumab after one TACE; 5 patients after two (33%). Pembrolizumab yielded no synergistic toxicity nor dose-limiting toxicities post-TACE. Treatment-related adverse events occurred in 93% of patients, most commonly skin rash (40%), fatigue, and diarrhea (27%). After a median follow-up of 38.5 months, objective response rate 12 weeks post-TACE was 53%. PFS rate at 12 weeks was 93% and median PFS was 8.95 months [95% confidence interval (CI): 7.30-NE (not estimable)]. Median duration of response was 7.3 months (95% CI: 6.3-8.3). Median overall survival was 33.5 months (95% CI: 11.6-NE). Dynamic changes in peripheral T-cell subsets, circulating tumor DNA, serum metabolites, and in stool bacterial profiles highlight potential mechanisms of action of multimodal therapy. CONCLUSIONS: TACE plus pembrolizumab was tolerable with no evidence of synergistic toxicity, encouraging further clinical development of immunotherapy alongside TACE.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/mortality , Male , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Female , Aged , Chemoembolization, Therapeutic/methods , Chemoembolization, Therapeutic/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Middle Aged , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Aged, 80 and over , Combined Modality Therapy , Treatment Outcome
12.
Environ Sci Pollut Res Int ; 31(10): 14845-14857, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38285256

ABSTRACT

The global consumption of antibiotics leads to their possible occurrence in the environment. In this context, nature-based solutions (NBS) can be used to sustainably manage and restore natural and modified ecosystems. In this work, we studied the efficiency of the NBS free-water surface wetlands (FWSWs) using Eichhornia crassipes in microcosm for enrofloxacin removal. We also explored the behavior of enrofloxacin in the system, its accumulation and distribution in plant tissues, the detoxification mechanisms, and the possible effects on plant growth. Enrofloxacin was initially taken up by E. crassipes (first 100 h). Notably, it accumulated in the sediment at the end of the experimental time. Removal rates above 94% were obtained in systems with sediment and sediment + E. crassipes. In addition, enrofloxacin was found in leaves, petioles, and roots (8.8-23.6 µg, 11-78.3 µg, and 10.2-70.7 µg, respectively). Furthermore, enrofloxacin, the main degradation product (ciprofloxacin), and other degradation products were quantified in the tissues and chlorosis was observed on days 5 and 9. Finally, the degradation products of enrofloxacin were analyzed, and four possible metabolic pathways of enrofloxacin in E. crassipes were described.


Subject(s)
Eichhornia , Water Pollutants, Chemical , Wetlands , Ecosystem , Enrofloxacin , Water Pollutants, Chemical/analysis , Biodegradation, Environmental
13.
Sci Adv ; 10(1): eadg5461, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170764

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the ongoing global pandemic associated with morbidity and mortality in humans. Although disease severity correlates with immune dysregulation, the cellular mechanisms of inflammation and pathogenesis of COVID-19 remain relatively poorly understood. Here, we used mouse-adapted SARS-CoV-2 strain MA10 to investigate the role of adaptive immune cells in disease. We found that while infected wild-type mice lost ~10% weight by 3 to 4 days postinfection, rag-/- mice lacking B and T lymphocytes did not lose weight. Infected lungs at peak weight loss revealed lower pathology scores, fewer neutrophils, and lower interleukin-6 and tumor necrosis factor-α in rag-/- mice. Mice lacking αß T cells also had less severe weight loss, but adoptive transfer of T and B cells into rag-/- mice did not significantly change the response. Collectively, these findings suggest that while adaptive immune cells are important for clearing SARS-CoV-2 infection, this comes at the expense of increased inflammation and pathology.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , T-Lymphocytes , Inflammation , Weight Loss , Disease Models, Animal
14.
Curr Opin Chem Biol ; 78: 102407, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086287

ABSTRACT

The aetiology of every human disease lies in a combination of genetic and environmental factors, each contributing in varying proportions. While genomics investigates the former, a comparable holistic paradigm was proposed for environmental exposures in 2005, marking the onset of exposome research. Since then, the exposome definition has broadened to include a wide array of physical, chemical, and psychosocial factors that interact with the human body and potentially alter the epigenome, the transcriptome, the proteome, and the metabolome. The chemical exposome, deeply intertwined with the metabolome, includes all small molecules originating from diet as well as pharmaceuticals, personal care and consumer products, or pollutants in air and water. The set of techniques to interrogate these exposures, primarily mass spectrometry and nuclear magnetic resonance spectroscopy, are also extensively used in metabolomics. Recent advances in untargeted metabolomics using high resolution mass spectrometry have paved the way for the development of methods able to provide in depth characterisation of both the internal chemical exposome and the endogenous metabolome simultaneously. Herein we review the available tools, databases, and workflows currently available for such work, and discuss how these can bridge the gap between the study of the metabolome and the exposome.


Subject(s)
Environmental Pollutants , Exposome , Humans , Environmental Exposure/adverse effects , Metabolome , Metabolomics/methods
15.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37965203

ABSTRACT

COVID-19 can result in neurological symptoms such as fever, headache, dizziness, and nausea. However, neurological signs of SARS-CoV-2 infection have been hardly assessed in mouse models. Here, we infected two commonly used wildtype mice lines (C57BL/6 and 129S) with mouse-adapted SARS-CoV-2 and demonstrated neurological signs including motion-related dizziness. We then evaluated whether the Calcitonin Gene-Related Peptide (CGRP) receptor antagonist, olcegepant, used in migraine treatment could mitigate acute neuroinflammatory and neurological responses to SARS-COV-2 infection. We infected wildtype C57BL/6J and 129/SvEv mice, and a 129 αCGRP-null mouse line with a mouse-adapted SARS-CoV-2 virus, and evaluated the effect of CGRP receptor antagonism on the outcome of that infection. First, we determined that CGRP receptor antagonism provided protection from permanent weight loss in older (>12 m) C57BL/6J and 129 SvEv mice. We also observed acute fever and motion-induced dizziness in all older mice, regardless of treatment. However, in both wildtype mouse lines, CGRP antagonism reduced acute interleukin 6 (IL-6) levels by half, with virtually no IL-6 release in mice lacking αCGRP. These findings suggest that migraine inhibitors such as those blocking CGRP signaling protect against acute IL-6 release and subsequent inflammatory events after SARS-CoV-2 infection, which may have repercussions for related pandemic and/or endemic coronaviruses.

16.
Mol Cell ; 83(23): 4202-4204, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38065060

ABSTRACT

In a recent issue of Cell, Mossmann et al.1 describe a novel role for an emerging cancer target, RNA-binding motif protein 39, as a metabolic sensor of the conditionally essential amino acid arginine.


Subject(s)
Neoplasms , RNA-Binding Proteins , Humans , Alternative Splicing , Gene Expression Regulation , Neoplasms/genetics , RNA Splicing , RNA-Binding Proteins/metabolism
17.
Virulence ; 14(1): 2273684, 2023 12.
Article in English | MEDLINE | ID: mdl-37948320

ABSTRACT

Paramyxoviruses are a family of single-stranded negative-sense RNA viruses, many of which are responsible for a range of respiratory and neurological diseases in humans and animals. Among the most notable are the henipaviruses, which include the deadly Nipah (NiV) and Hendra (HeV) viruses, the causative agents of outbreaks of severe disease and high case fatality rates in humans and animals. NiV and HeV are maintained in fruit bat reservoirs primarily in the family Pteropus and spillover into humans directly or by an intermediate amplifying host such as swine or horses. Recently, non-chiropteran associated Langya (LayV), Gamak (GAKV), and Mojiang (MojV) viruses have been discovered with confirmed or suspected ability to cause disease in humans or animals. These viruses are less genetically related to HeV and NiV yet share many features with their better-known counterparts. Recent advances in surveillance of wild animal reservoir viruses have revealed a high number of henipaviral genome sequences distributed across most continents, and mammalian orders previously unknown to harbour henipaviruses. In this review, we summarize the current knowledge on the range of pathogenesis observed for the henipaviruses as well as their replication cycle, epidemiology, genomics, and host responses. We focus on the most pathogenic viruses, including NiV, HeV, LayV, and GAKV, as well as the experimentally non-pathogenic CedV. We also highlight the emerging threats posed by these and potentially other closely related viruses.


Subject(s)
Chiroptera , Hendra Virus , Henipavirus Infections , Nipah Virus , Animals , Humans , Swine , Horses , Virulence , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Nipah Virus/genetics , Hendra Virus/genetics , Disease Outbreaks
18.
Cell Rep ; 42(10): 113307, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858464

ABSTRACT

Ovarian high-grade serous carcinoma (HGSC) is the most common subtype of ovarian cancer with limited therapeutic options and a poor prognosis. In recent years, poly-ADP ribose polymerase (PARP) inhibitors have demonstrated significant clinical benefits, especially in patients with BRCA1/2 mutations. However, acquired drug resistance and relapse is a major challenge. Indisulam (E7070) has been identified as a molecular glue that brings together splicing factor RBM39 and DCAF15 E3 ubiquitin ligase resulting in polyubiquitination, degradation, and subsequent RNA splicing defects. In this work, we demonstrate that the loss of RBM39 induces splicing defects in key DNA damage repair genes in ovarian cancer, leading to increased sensitivity to cisplatin and various PARP inhibitors. The addition of indisulam also improved olaparib response in mice bearing PARP inhibitor-resistant tumors. These findings demonstrate that combining RBM39 degraders and PARP inhibitors is a promising therapeutic approach to improve PARP inhibitor response in ovarian HGSC.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Female , Humans , Animals , Mice , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA1 Protein/genetics , Mutation , RNA Splicing Factors/genetics , RNA , BRCA2 Protein/genetics , Neoplasm Recurrence, Local/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , RNA Splicing , Phthalazines/pharmacology , Phthalazines/therapeutic use
19.
Front Oncol ; 13: 1264785, 2023.
Article in English | MEDLINE | ID: mdl-37795443

ABSTRACT

Approximately 15% of cancers exhibit loss of the chromosomal locus 9p21.3 - the genomic location of the tumour suppressor gene CDKN2A and the methionine salvage gene methylthioadenosine phosphorylase (MTAP). A loss of MTAP increases the pool of its substrate methylthioadenosine (MTA), which binds to and inhibits activity of protein arginine methyltransferase 5 (PRMT5). PRMT5 utilises the universal methyl donor S-adenosylmethionine (SAM) to methylate arginine residues of protein substrates and regulate their activity, notably histones to regulate transcription. Recently, targeting PRMT5, or MAT2A that impacts PRMT5 activity by producing SAM, has shown promise as a therapeutic strategy in oncology, generating synthetic lethality in MTAP-negative cancers. However, clinical development of PRMT5 and MAT2A inhibitors has been challenging and highlights the need for further understanding of the downstream mediators of drug effects. Here, we discuss the rationale and methods for targeting the MAT2A/PRMT5 axis for cancer therapy. We evaluate the current limitations in our understanding of the mechanism of MAT2A/PRMT5 inhibitors and identify the challenges that must be addressed to maximise the potential of these drugs. In addition, we review the current literature defining downstream effectors of PRMT5 activity that could determine sensitivity to MAT2A/PRMT5 inhibition and therefore present a rationale for novel combination therapies that may not rely on synthetic lethality with MTAP loss.

20.
Sci Adv ; 9(38): eadj1736, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37738347

ABSTRACT

Pathology studies of SARS-CoV-2 Omicron variants of concern (VOC) are challenged by the lack of pathogenic animal models. While Omicron BA.1 and BA.2 replicate in K18-hACE2 transgenic mice, they cause minimal to negligible morbidity and mortality, and less is known about more recent Omicron VOC. Here, we show that in contrast to Omicron BA.1, BA.5-infected mice exhibited high levels of morbidity and mortality, correlating with higher early viral loads. Neither Omicron BA.1 nor BA.5 replicated in brains, unlike most prior VOC. Only Omicron BA.5-infected mice exhibited substantial weight loss, high pathology scores in lungs, and high levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid, and 5- to 8-month-old mice exhibited 100% fatality. These results identify a rodent model for pathogenesis or antiviral countermeasure studies for circulating SARS-CoV-2 Omicron BA.5. Further, differences in morbidity and mortality between Omicron BA.1 and BA.5 provide a model for understanding viral determinants of pathogenicity.


Subject(s)
COVID-19 , Animals , Mice , Virulence , SARS-CoV-2 , Antiviral Agents , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...