Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(8): 9502-9511, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32559065

ABSTRACT

The replacement of plastic with eco-friendly and biodegradable materials is one of the most stringent environmental challenges. In this respect, cellulose stands out as a biodegradable polymer. However, a significant challenge is to obtain biodegradable materials for high-end photonics that are robust in humid environments. Here, we demonstrate the fabrication of high-quality micro- and nanoscale photonic and plasmonic structures via replica molding using pure cellulose and a blended version with nonedible agro-wastes. Both materials are biodegradable in soil and seawater according to the ISO 17556 standard. The pure cellulose films are transparent in the vis-NIR spectrum, having a refractive index similar to glass. The microstructured photonic crystals show high-quality diffractive properties that are maintained under extended exposure to water. Nanostructuring the cellulose transforms it to a biodegradable metasurface manifesting bright structural colors. A subsequent deposition of Ag endowed the metasurface with plasmonic properties used to produce plasmonic colors and for surface-enhanced Raman scattering.


Subject(s)
Cellulose , Optics and Photonics , Glass , Photons , Spectrum Analysis, Raman
2.
Opt Express ; 26(19): 24372-24383, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469557

ABSTRACT

A waveguide Young interferometer is presented with simultaneous detection of complex refractive index of a liquid sample. The real part of the refractive index change (refraction) is detected by tracing phase shifts of the interferogram generated by a sensing and reference waveguide. The imaginary part of the refractive index (absorption) is determined by the attenuation of the transmitted signal at certain wavelength. Furthermore, nano-filters are fabricated atop the sensing waveguide, which enables size-exclusion filtering of species to the evanescent field. It shows capability of distinguishing small and large particles from 100 nm to 500 nm in diameter, which is further confirmed by fluorescent excitation experiments. The present sensor could find broad application in optical characterization of complex turbid media with regard to their complex refractive index.

3.
Materials (Basel) ; 9(10)2016 Oct 19.
Article in English | MEDLINE | ID: mdl-28773968

ABSTRACT

In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent's properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V2O5) nanoparticles were added to the nanofibers. Adsorption data were analyzed according to the Freundlich adsorption model. The thermodynamic parameters verified that only at basic pH is the adsorption spontaneous and in general the process is entropy-driven and endothermic. The kinetics of the adsorption process was evaluated by the pseudo-first- and pseudo-second-order models. The latter model exhibited the highest correlation with data. In sum, the adsorbent showed a promising potential for dye removal from industrial dyeing wastewater systems, especially when envisaging their alkaline and hot conditions.

4.
Materials (Basel) ; 7(2): 727-741, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-28788484

ABSTRACT

Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

5.
Materials (Basel) ; 7(2): 1221-1248, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-28788511

ABSTRACT

Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon). These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on) perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

6.
Nat Commun ; 4: 2400, 2013.
Article in English | MEDLINE | ID: mdl-24169567

ABSTRACT

Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal-polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials.


Subject(s)
Gold/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Nanotechnology/methods , Hot Temperature , Porosity , Static Electricity
7.
Adv Mater ; 23(45): 5410-4, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21997378

ABSTRACT

The design and fabrication of a plasmonic black absorber with almost 100% absorbance spanning a broad range of frequencies from ultraviolet (UV) to the near infrared (NIR) is demonstrated. The perfect plasmonic absorber is achieved by a combination of a metal film with suitable metal/dielectric nanocomposites. Our fabrication technique is simple, versatile, cost-effective, and compatible with current industrial methods for solar absorber production.


Subject(s)
Nanocomposites/chemistry , Nanotechnology/methods , Absorption , Color , Electrochemistry , Infrared Rays , Metals/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...