Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(11): 16915-16927, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38329667

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulating, and toxic compounds that have attracted global attention. It is challenging to reduce the residual concentrations of these compounds to safe discharge limits. In this study, batch experiments were performed to evaluate natural clinoptilolite and clinoptilolites modified (MC) with cetylpyridinium chloride (CPC-MC), didodecyldimethylammonium bromide (DDAB-MC), hexadecyltrimethylammonium bromide (HDTMA-MC), and tetramethylammonium chloride (TMA-MC) as cost-effective aqueous PFAS adsorbents. The removal capacities of the adsorbents for the majority of the PFASs decreased in the following order: DDAB-MC > CPC-MC ≫ modified natural clinoptilolite with hexadecyltrimethyl ammonium bromide (HDTMA-MC) ≫ modified natural clinoptilolite with tetramethylammonium chloride (TMA-MC) ≈ natural clinoptilolite modified with NaCl (NC). In particular, CPC-MC and DDAB-MC reduced PFASs concentration in 50 µg/L by up to 98% for perfluorooctane sulphonate. Within 30 min, CPC-MC (30.5 µg/L) and DDAB-MC (32.1 µg/L) met the PFOS water quality criterion of 36 µg/L in inland surface waters. Both adsorbents met this criterion at the highest solution volume (40 mL) and 0.125 g/L (solid-to-liquid ratio of 1:8). PFASs with short hydrocarbon chains competed more for adsorption. PFASs with sulphonate functional groups were also adsorbed more than carboxyl groups in single- and multi-PFAS solutions. The modified surfaces of clinoptilolites controlled PFAS adsorption through hydrophobic and electrostatic interactions. PFAS removal with surfactant-modified clinoptilolites is cost-effective and protects aquatic environments by using surplus natural materials.


Subject(s)
Fluorocarbons , Quaternary Ammonium Compounds , Water Pollutants, Chemical , Zeolites , Surface-Active Agents/chemistry , Lipoproteins , Adsorption , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
2.
Waste Manag ; 131: 503-512, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34274862

ABSTRACT

The authors report the potential adsorption capacities of three surfactant-modified clinoptilolites (MC)-cetylpyridinium chloride (CPC)-MC, didodecyldimethylammonium bromide (DDAB)-MC, and hexadecyltrimethylammonium bromide (HDTMA)-MC-for the removal of polycyclic aromatic hydrocarbons (PAHs) from aquatic environments and landfill leachate. A liquid-liquid extraction method was used to extract PAHs from water and GC/MS was used to analyse the PAHs. PAH accumulations on CPC-MC, DDAB-MC, and HDTMA-MC were linear over 21 successive batch adsorption tests for anthracene (708, 737, and 750 µg/g), fluoranthene (1355, 1583, and 1303 µg/g), fluorene (973, 1060, and 1147 µg/g), phenanthrene (844, 1057, and 989 µg/g), and pyrene (1343, 1569, and 1269 µg/g). The leachability after 21 successive accumulations was <2% for anthracene, <4% for fluoranthene, <3% for fluorene, <4% for pyrene, and <5% for phenanthrene for each adsorbent. PAH removals from landfill leachate for anthracene, fluoranthene, fluorene, phenanthrene, and pyrene were 97.8%, 98.6%, 95.7%, 97.0%, and 98.5% for CPC-MC and 99.0%, 99.6%, 98.0%, 99.0%, and 99.6% for DDAB-MC, respectively, meeting the fresh water quality standards established by British Columbia and the World Health Organization (WHO) for anthracene, fluoranthene, and fluorene. The molecular weight and molecular structure of PAHs and the hydrophobicity of adsorbents can fundamentally influence the PAH adsorption mechanism based on π-π stacking.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Adsorption , Polycyclic Aromatic Hydrocarbons/analysis , Surface-Active Agents , Water Pollutants, Chemical/analysis , Zeolites
3.
J Environ Manage ; 273: 111113, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32734893

ABSTRACT

Carcinogenic polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment. In this study, the removal of PAHs from aqueous media was assessed using samples of clinoptilolite, a natural zeolite, pre-treated with 1 mol/L of NaCl, (Na pre-treated clinoptilolite, NC). Samples (10 g) of NC were separately modified with 5, 2, 2, and 20-mmol/L solutions of cetylpyridinium chloride (CPC), didodecyldimethyl ammonium bromide (DDAB), hexadecyltrimethylammonium bromide (HDTMA), and tetramethyl ammonium chloride (TMA) surfactants as potential cost-effective adsorbents. The kinetics, optimal sorbent dosage, and competitive effects were evaluated through batch adsorption tests using deionised water spiked with five PAHs (anthracene (50 µg/L), fluoranthene (100 µg/L), fluorene (100 µg/L), phenanthrene (100 µg/L), and pyrene (100 µg/L)). The surfactant non-modified (NC) and TMA-MC (modified clinoptilolite) exhibited PAH removal of <66% from the spiked concentration in aqueous solution, while CPC-MC, DDAB-MC, and HDTMA-MC achieved removal rates of >93% for the five PAHs after 24 h at a solid:liquid ratio of 1:100. The remaining concentrations of anthracene and fluoranthene were below 3 µg/L, and that of fluorene was <6 µg/L, lower than the water quality criteria of British Columbia, Canada, for protecting aquatic life. However, HDTMA-MC retained >83% of the fluorene. Over 80% of all PAHs were absorbed within 15 min for the CPC-MC and DDAB-MC, and the maximum adsorption was reached in <2 h. Three kinetic models were applied assuming pseudo-first-order, pseudo-second-order, and intra-particle equations, and the results were well-represented by the pseudo-second-order equation. The PAH sorption results indicated that the adsorption mechanism is based on PAH hydrophobicity, and π-π electron-donor-acceptor interaction with surfactant. CPC and DDAB with two long chain hydrocarbons had more PAH adsorption than HDTMA with one, and TMA with no long chain hydrocarbons (DDAB-MC > CPC-MC > HDTMA-MC â‰« TMA-MC > NC). With a solid:liquid ratio of 1:200, over 90%, 80%, and 70% of the anthracene, fluoranthene, and pyrene were adsorbed by the CPC-MC, DDAB-MC, and HDTMA-MC, respectively.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Zeolites , Adsorption , British Columbia
SELECTION OF CITATIONS
SEARCH DETAIL
...