Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Gene Med ; 17(6-7): 116-31, 2015.
Article in English | MEDLINE | ID: mdl-25929556

ABSTRACT

BACKGROUND: Despite spectacular successes in hepatitis B and C therapies, severe hepatic impairment is still a major treatment problem. The clinically tested infectious bursal disease virus (IBDV) superinfection therapy promises an innovative, interferon-free solution to this great unmet need, provided that a consistent manufacturing process preventing mutations or reversions to virulent strains is obtained. METHODS: To address safety concerns, a tissue culture adapted IBDV vaccine strain V903/78 was cloned into cDNA plasmids ensuring reproducible production of a reverse engineered virus R903/78. The therapeutic drug candidate was characterized by immunocytochemistry assay, virus particle determination and immunoblot analysis. The biodistribution and potential immunogenicity of the IBDV agent was determined in mice, which is not a natural host of this virus, by quantitative detection of IBDV RNA by a quantitative reverse transcriptase-polymerase chain reaction and virus neutralization test, respectively. RESULTS: Several human cell lines supported IBDV propagation in the absence of visible cytopathic effect. The virus was stable from pH 8 to pH 6 and demonstrated significant resistance to low pH and also proved to be highly resistant to high temperatures. No pathological effects were observed in mice. Single and multiple oral administration of IBDV elicited antibodies with neutralizing activities in vitro. CONCLUSIONS: Repeat oral administration of R903/78 was successful despite the presence of neutralizing antibodies. Single oral and intravenous administration indicated that IBDV does not replicate in mammalian liver alleviating some safety related concerns. These data supports the development of an orally delivered anti-hepatitis B virus/ anti-hepatitis C virus viral agent for human use.


Subject(s)
Infectious bursal disease virus , Superinfection/therapy , Administration, Oral , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/administration & dosage , Antibodies, Viral/immunology , Cell Line , Hepatitis B/immunology , Hepatitis B/therapy , Hepatitis C/immunology , Hepatitis C/therapy , Humans , Infectious bursal disease virus/genetics , Infectious bursal disease virus/immunology , Mice , Reverse Genetics , Superinfection/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
2.
Viruses ; 2(8): 1681-1703, 2010 Aug.
Article in English | MEDLINE | ID: mdl-21994701

ABSTRACT

Adenovirus (Ad) vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue). Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA) contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.

3.
Cancer Immunol Immunother ; 55(11): 1412-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16612598

ABSTRACT

Conditionally replicative adenovirus (CRAd) vectors are novel vectors with utility as virotherapy agents for alternative cancer therapies. These vectors have already established a broad safety record in humans and overcome some of the limitations of non-replicative adenovirus (Ad) vectors. In addition, one potential problem with these vectors, attainment of tumor or tissue selectivity has widely been addressed. However, two confounding problems limiting efficacy of these drug candidates remains. The paucity of the native Ad receptor on tumor tissues, and host humoral response due to pre-existing titers of neutralizing antibodies against the vector itself in humans have been highlighted in the clinical context. The well-characterized CRAd, AdDelta24-RGD, is infectivity enhanced, thus overcoming the lack of coxsackievirus and adenovirus receptor (CAR), and this agent is already rapidly progressing towards clinical translation. However, the perceived host humoral response potentially will limit gains seen from the infectivity enhancement and therefore a strategy to blunt immunity against the vector is required. On the basis of this caveat a novel strategy, termed shielding, has been developed in which the genetic modification of a virion capsid protein would provide uniformly shielded Ad vectors. The identification of the pIX capsid protein as an ideal locale for genetic incorporation of shielding ligands to conceal the Ad vector from pre-existing neutralizing antibodies is a major progression in the development of shielded CRAds. Preliminary data utilizing an Ad vector with HSV-TK fused to the pIX protein indicates that a shield against neutralizing antibodies can be achieved. The utility of various proteins as shielding molecules is currently being addressed. The creation of AdDelta24S-RGD, an infectivity enhanced and shielded Ad vector will provide the next step in the development of clinically and commercially feasible CRAds that can be dosed multiple times for maximum effectiveness in the fight against cancers in humans.


Subject(s)
Adenoviridae/genetics , Genetic Vectors , Neoplasms/therapy , Oncolytic Virotherapy/methods , Capsid/chemistry , Humans , Models, Biological , Neoplasms/genetics
4.
Virus Res ; 116(1-2): 185-95, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16293334

ABSTRACT

The utility of adenovirus serotype 5 (Ad5)-based vectors for gene therapy applications would be improved by cell-specific targeting. However, strategies to redirect Ad5 vectors to alternate cellular receptors via replacement of the capsid fiber protein have often resulted in structurally unstable vectors. In view of this, we hypothesized that the selection of modified adenoviruses during their rescue and propagation would be a straightforward approach that guarantees the generation of functional, targeted vectors. Based on our first generation fiber-fibritin molecule, several new chimeric fibers containing variable amounts of fibritin and the Ad5 fiber shaft were analyzed via a new scheme for Ad vector selection. Our selected chimera, composed of the entire Ad5 fiber shaft fused to the 12th coiled-coil segment of fibritin, is capable of efficient capsid incorporation and ligand display. Moreover, transduction by the resultant vector is independent of the expression of the native Ad5 receptor. The incorporation of the Fc-binding domain of Staphylococcus aureus protein A at the carboxy terminus of this chimeric fiber facilitates targeting of the vector to a variety of cellular receptors by means of coupling with monoclonal antibodies. In addition, we have concluded that Ad5 vectors incorporating individual targeting ligands require individual optimization of the fiber-fibritin chimera, which may be accomplished by selecting the optimal fiber-fibritin variant at the stage of rescue of the virus in cells of interest, as described herein.


Subject(s)
Adenoviridae/genetics , Antibodies, Monoclonal/metabolism , Genetic Vectors/genetics , Capsid Proteins/genetics , Capsid Proteins/physiology , Cell Line , Gene Targeting/methods , Gene Transfer Techniques , Genetic Therapy/methods , Humans , Ligands , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/physiology , Staphylococcal Protein A/genetics , Staphylococcal Protein A/metabolism , Viral Proteins/genetics , Viral Proteins/physiology
5.
Pigment Cell Res ; 15(1): 49-56, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11837456

ABSTRACT

Human melanocytes in monolayer culture are extremely dependent on a wide range of soluble signals for their proliferation and melanogenesis. The advent of three-dimensional models of reconstructed skin allows one to ask questions of how these cells are regulated within a setting which more closely approximates normal skin. The purpose of this study was to investigate to what extent melanocytes within a reconstructed skin model are sensitive to regulation by dermal fibroblasts, basement membrane (BM) proteins and the addition of alpha-melanocyte-stimulating hormone (alpha-MSH). Sterilized acellular de-epidermized dermis (prepared to retain BM proteins or deliberately denuded of BM by enzymatic treatment) from skin type I or II was reconstituted with fibroblasts, melanocytes and keratinocytes. In all but one case (9/10), cell donors were skin type I or II. The presence of BM antigens was found to be necessary for positional orientation of the melanocytes; in the absence of BM, melanocytes moved into the upper keratinocyte layer pigmenting spontaneously. Addition of fibroblasts suppressed the extent of spontaneous pigmentation of melanocytes within this model. Neither alpha-MSH nor cholera toxin induced pigmentation in this model despite the fact that melanocytes clearly had the ability to synthesize pigment.


Subject(s)
Fibroblasts/metabolism , Melanocytes/physiology , Skin Pigmentation/physiology , Adult , Basement Membrane/metabolism , Cells, Cultured , Cholera Toxin/pharmacology , Fibroblasts/cytology , Humans , Melanocytes/drug effects , Melanosomes/metabolism , Skin/cytology , alpha-MSH/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...