Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Protoc ; 18(9): 2745-2771, 2023 09.
Article in English | MEDLINE | ID: mdl-37542183

ABSTRACT

Atropisomers are molecules whose stereogenicity arises from restricted rotation about a single bond. They are of current importance because of their applications in catalysis, medicine and materials science. The defining feature of atropisomeric molecules is that their stereoisomers are related to one another by bond rotation: as a result, evaluating their configurational stability (i.e., the rate at which their stereoisomers interconvert) is central to any work in this area. Important atropisomeric scaffolds include C-C linked biaryls, such as the ligand BINAP and the drug vancomycin, and C-N linked amine derivatives such as the drug telenzepine. This article focuses on the three most widely used experimental methods that are available to measure the rate of racemization in atropisomers, namely: (i) kinetic analysis of the racemization of an enantioenriched sample, (ii) dynamic HPLC and (iii) variable-temperature NMR. For each technique, an explanation of the theory is set out, followed by a detailed experimental procedure. A discussion is also included of which technique to try when confronted with a new molecular structure whose properties are not yet known. None of the three procedures require complex experimental techniques, and all can be performed by using standard analytical equipment (NMR and HPLC). The time taken to determine a racemization rate depends on which experimental method is required, but for a new compound it is generally possible to measure a racemization rate in <1 d.


Subject(s)
Kinetics , Molecular Structure , Temperature , Magnetic Resonance Spectroscopy , Stereoisomerism
2.
Nat Commun ; 14(1): 2647, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37156760

ABSTRACT

Molecular biology achieves control over complex reaction networks by means of molecular systems that translate a chemical input (such as ligand binding) into an orthogonal chemical output (such as acylation or phosphorylation). We present an artificial molecular translation device that converts a chemical input - the presence of chloride ions - into an unrelated chemical output: modulation of the reactivity of an imidazole moiety, both as a Brønsted base and as a nucleophile. The modulation of reactivity operates through the allosteric remote control of imidazole tautomer states. The reversible coordination of chloride to a urea binding site triggers a cascade of conformational changes in a chain of ethylene-bridged hydrogen-bonded ureas, switching the chain's global polarity, that in turn modulates the tautomeric equilibrium of a distal imidazole, and hence its reactivity. Switching reactivities of active sites by dynamically controlling their tautomer states is an untapped strategy for building functional molecular devices with allosteric enzyme-like properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...