Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Photomed Laser Surg ; 33(9): 467-72, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26270129

ABSTRACT

OBJECTIVE: In vitro studies evaluated cementum surface morphology and microleakage of three different energy density parameters of Erbium: Yttrium Aluminum Garnet (Er:YAG) laser compared with diamond bur preparation on class V cavities with self-etch adhesive system and composite resin restoration. MATERIAL AND METHODS: Standard class V cavities were prepared at cervical area below the cementoenamel junction (CEJ) in 80 extracted premolars, by using a diamond bur on the buccal surface. All teeth were randomly allocated into four groups: Group 1, diamond bur; Group 2, Er:YAG 50 mJ/15 Hz, 3.77 J/cm(2); Group 3, Er:YAG 75 mJ/15 Hz, 5.65 J/cm(2); and Group 4, Er:YAG 100 mJ/15 Hz, 7.53 J/cm(2). Five cavities from each group were evaluated by scanning electron microscopy (SEM). The 15 remaining cavities from each group were restored with self-etch adhesive and nano-hybrid composite. After thermocycling, all sample teeth were immersed in 0.2% methylene blue dye and sectioned buccolingually. Statistics were analyzed using the one way ANOVA and Mann-Whitney U tests with Bonferroni correction. RESULTS: The morphology showed micro-irregularities in the cementum surface of the laser group with the absence of a smear layer. The microstructure characteristics were increased surface roughness followed by increasing laser energy transmission. The Er:YAG laser groups were statistically significant, with less microleakage than the diamond bur group (p<0.05). There was statistically significant difference between the occlusal and gingival microleakage in all the groups (p<0.05). When the laser groups were compared, the lowest microleakage was achieved with energy density at 3.77 J/cm(2) on the occlusal and gingival cementum margin, which showed less microleakage than at energy densities of 5.65 and 7.53 J/cm(2) with Er:YAG laser. CONCLUSIONS: These observations indicate that the micro-irregularities of the cementum surface could facilitate the formation of a hybridization zone with a self-etch adhesive system. Therefore, the microleakage of Er:YAG laser irradiation was significantly decreased compared with diamond bur cavities.


Subject(s)
Dental Cavity Preparation/methods , Dental Etching , Dental Leakage , Dentin-Bonding Agents , Bicuspid , Dental Cementum/radiation effects , Dental Cementum/ultrastructure , Dentin/radiation effects , Dentin/ultrastructure , Humans , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...