Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Space Sci Rev ; 2142018.
Article in English | MEDLINE | ID: mdl-33758433

ABSTRACT

The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON's goal is to weigh the competing impacts of these two drivers as they influence our space environment. Here we describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected, the overall performance requirements of the science payload and the operational requirements are also described. ICON's development began in 2013 and the mission is on track for launch in 2017. ICON is developed and managed by the Space Sciences Laboratory at the University of California, Berkeley, with key contributions from several partner institutions.

2.
Space Sci Rev ; 212(1-2): 615-629, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30197455

ABSTRACT

The Ionospheric Connections Explorer (ICON) payload includes an Ion Velocity Meter (IVM) to provide measurements of the ion drift motions, density, temperature and major ion composition at the satellite altitude near 575 km. The primary measurement goal for the IVM is to provide the meridional ion drift perpendicular to the magnetic meridian with an accuracy of 7.5 ms-1 for all daytime conditions encountered by the spacecraft within 15° of the magnetic equator. The IVM will derive this parameter utilizing two sensors, a retarding potential analyzer (RPA) and an ion drift meter (IDM) that have a robust and successful flight heritage. The IVM described here incorporates improvements in the design and operation to produce the most sensitive device that has been fielded to date. It will specify the ion drift vector, from which the component perpendicular to the magnetic field will be derived. In addition it will specify the total ion density, the ion temperature and the fractional ion composition. These data will be used in conjunction with measurements from the other ICON instruments to uncover the important connections between the dynamics of the neutral atmosphere and the ionosphere through the generation of dynamo currents perpendicular to the magnetic field and collisional forces parallel to the magnetic field. Here the configuration and operation of the IVM instrument are described as well as the procedures by which the ion drift velocity is determined. A description of the subsystem characteristics, which allow a determination of the expected uncertainties in the derived parameters, is also given.

SELECTION OF CITATIONS
SEARCH DETAIL
...