Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biosci ; 13(1): 205, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941042

ABSTRACT

BACKGROUND: Lung cancer, the most common cause of cancer-related mortality worldwide, is predominantly associated with advanced/metastatic disease. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) in tumor microenvironment is known to be essential for regulating tumor progression and metastasis, but the underlying mechanisms, particularly the role of RNA-binding protein Musashi-2 (MSI2) in CAFs in promoting non-small cell lung cancer (NSCLC) invasiveness and metastatic spread, remain obscure. METHODS: Genomic and proteomic database analyses were performed to evaluate the potential clinical significance of MSI2 in NSCLC tumor and stromal clinical specimens. Molecular approaches were used to modify MSI2 in CAFs and determine its functional role in NSCLC cell motility in vitro using 2D and 3D models, and in metastasis in a xenograft mouse model using live-cell imaging. RESULTS: MSI2, both gene and protein, is upregulated in NSCLC tissues and is associated with poor prognosis and high metastatic risk in patients. Interestingly, MSI2 is also upregulated in NSCLC stroma and activated fibroblasts, including CAFs. Depletion of MSI2 in CAFs by CRISPR-Cas9 strongly inhibits NSCLC cell migration and invasion in vitro, and attenuates local and distant metastatic spread of NSCLC cells in vivo. The crosstalk between CAFs and NSCLC cells occurs via paracrine signaling, which is regulated by MSI2 in CAFs via IL-6. The secreted IL-6 promotes epithelial-mesenchymal transition in NSCLC cells, which drives metastasis. CONCLUSION: Our findings reveal for the first time that MSI2 in CAFs is important in CAF-mediated NSCLC cell invasiveness and metastasis via IL-6 paracrine signaling. Therefore, targeting the MSI2/IL-6 axis in CAFs could be effective in combating NSCLC metastasis.

2.
Lung Cancer ; 181: 107258, 2023 07.
Article in English | MEDLINE | ID: mdl-37245409

ABSTRACT

OBJECTIVES: A cure for cancer is out of reach for most patients due to chemoresistance. Cancer-associated fibroblasts (CAFs) play a vital role in cancer chemoresistance, but detailed understanding of the process particularly in chemoresistant lung cancer is lacking. In this study, we investigated programmed death-ligand 1 (PDL-1) as a potential biomarker for CAF-induced chemoresistance and evaluated its role and the underlying mechanisms of chemoresistance in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: A systemic search of gene expression profiles of multiple tissues in NSCLC was carried out to determine the expression intensities of traditional fibroblast biomarkers and CAF-secreted protumorigenic cytokines. PDL-1 expression in CAFs was analyzed by ELISA, Western blotting, and flow cytometry. Human cytokine array was used to identify specific cytokines secreted from CAFs. Role of PDL-1 in NSCLC chemoresistance was assessed using CRISPR/Cas9 knockdown and various functional assays including MTT, cell invasion, sphere formation, and cell apoptosis. In vivo experiments were conducted using a co-implantation xenograft mouse model with live cell imaging and immunohistochemistry. RESULTS: We demonstrated that chemotherapy-stimulated CAFs promoted tumorigenic and stem cell-like properties of NSCLC cells, which contribute to their chemoresistance. Subsequently, we revealed that PDL-1 expression is upregulated in chemotherapy-treated CAFs and is associated with poor prognosis. Silencing PDL-1 expression suppressed CAFs' ability to promote stem cell-like properties and invasiveness of lung cancer cells, favoring chemoresistance. Mechanistically, an upregulation of PDL-1 in chemotherapy-treated CAFs led to an increase in hepatocyte growth factor (HGF) secretion, which stimulates cancer progression, cell invasion, and stemness of lung cancer cells, while inhibiting apoptosis. CONCLUSION: Our results show that PDL-1-positive CAFs modulate stem cell-like properties of NSCLC cells by secreting elevated HGF, thereby promoting chemoresistance. Our finding supports PDL-1 in CAFs as a chemotherapy response biomarker and as a drug delivery and therapeutic target for chemoresistant NSCLC.


Subject(s)
Antineoplastic Agents , Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Cancer-Associated Fibroblasts/metabolism , Drug Resistance, Neoplasm , Fibroblasts , Cytokines/metabolism , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation
3.
AAPS PharmSciTech ; 20(6): 250, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31297635

ABSTRACT

Melanoma is regarded as the fifth and sixth most common cancer in men and women, respectively, and it is estimated that one person dies from melanoma every hour in the USA. Unfortunately, the treatment of melanoma is difficult because of its aggressive metastasis and resistance to treatment. The treatment of melanoma continues to be a challenging issue due to the limitations of available treatments such as a low response rate, severe adverse reactions, and significant toxicity. Natural polyphenols have attracted considerable attention from the scientific community due to their chemopreventive and chemotherapeutic efficacy. It has been suggested that poorly soluble polyphenols such as curcumin, resveratrol, quercetin, coumarin, and epigallocatechin-3-gallate may have significant benefits in the treatment of melanoma due to their antioxidant, anti-inflammatory, antiproliferative, and chemoprotective efficacies. The major obstacles for the use of polyphenolic compounds are low stability and poor bioavailability. Numerous nanoformulations, including solid lipid nanoparticles, polymeric nanoparticles, micelles, and liposomes, have been formulated to enhance the bioavailability and stability, as well as the therapeutic efficacy of polyphenols. This review will provide an overview of poorly soluble polyphenols that have been reported to have antimetastatic efficacy in melanomas.


Subject(s)
Drug Delivery Systems/methods , Melanoma/drug therapy , Polyphenols/administration & dosage , Polyphenols/chemistry , Skin Neoplasms/drug therapy , Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Antioxidants/metabolism , Biological Availability , Catechin/administration & dosage , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/metabolism , Curcumin/administration & dosage , Curcumin/chemistry , Curcumin/metabolism , Humans , Melanoma/metabolism , Melanoma/prevention & control , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticles/metabolism , Polyphenols/metabolism , Quercetin/administration & dosage , Quercetin/chemistry , Quercetin/metabolism , Resveratrol/administration & dosage , Resveratrol/chemistry , Resveratrol/metabolism , Skin Neoplasms/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...