Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 149(5): 1481-1488, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38314857

ABSTRACT

Mobile phase pH is a critically important parameter in reversed-phase liquid chromatographic (RPLC) separations involving analytes that display acidic or basic properties in the pH range used for the mobile phase. The main problem in measuring mobile phase pH lies in the fact that RPLC mobile phases are typically aqueous-organic mixtures. In addition to experimental difficulties, the pH values refer to different aqueous-organic compositions that cannot be correctly compared. Given this situation, the unified pH (wabspH, also termed as ) based on the absolute chemical potential of the solvated proton has been proposed as a rigorous way of characterising mobile phase acidity that is fully inter-comparable between mobile phases of any composition. Here we report the wabspH values of 78 reversed-phase liquid chromatography-mass spectrometry mobile phases that were carefully measured by potential differences in a symmetric cell with two glass electrode half-cells and almost ideal ionic liquid triethylamylammonium bis((trifluoromethyl)sulfonyl)imide [N2225][NTf2] salt bridge with multiple overlapping measurements. The system of altogether 300 ΔwabspH values was anchored to the pH value of standard pH 7.00 aqueous buffer solution. The consistency standard deviation of the whole set of measurements was 0.09 pH units. In addition to the differential potentiometric reference method, simpler measurement methods that use double junction reference or double junction combined electrodes were tested and were found suitable for routine laboratories if high accuracy is not required.

2.
Anal Bioanal Chem ; 416(2): 461-465, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38001374

ABSTRACT

The recently introduced unified pH ([Formula: see text]) concept enables rigorous pH measurements in non-aqueous and mixed media while at the same time maintaining comparability to the conventional aqueous pH scale. However, its practical application is hindered by a shortage of reference [Formula: see text] values. In order to improve this situation, the European Metrology Research Project (EMPIR) UnipHied ("Realisation of a UnipHied pH scale") launched an interlaboratory comparison among highly experienced electrochemistry expert laboratories to assign the first such reference [Formula: see text] values by adopting an extensive statistical treatment of the reported measurement data: to phosphate buffer in water-ethanol mixture (50 wt% of ethanol) and ammonium formate buffer in pure ethanol. Two different measurement setups - one capable of being easily adopted in industrial applications - have been used to demonstrate the robustness of [Formula: see text] measurement. This is an important step towards wider adoption of the [Formula: see text] concept in practice, like liquid chromatography, biofuels analysis and electrocatalysis.

3.
Chemistry ; 29(46): e202300609, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37191477

ABSTRACT

We have devised the unified redox scale Eabs H2O , which is valid for all solvents. The necessary single ion Gibbs transfer energy between two different solvents, which only can be determined with extra-thermodynamic assumptions so far, must clearly satisfy two essential conditions: First, the sum of the independent cation and anion values must give the Gibbs transfer energy of the salt they form. The latter is an observable and measurable without extra-thermodynamic assumptions. Second, the values must be consistent for different solvent combinations. With this work, potentiometric measurements on silver ions and on chloride ions show that both conditions are fulfilled using a salt bridge filled with the ionic liquid [N2225 ][NTf2 ]: if compared to the values resulting from known pKL values, the silver and chloride single ion magnitudes combine within a uncertainty of 1.5 kJ mol-1 to the directly measurable transfer magnitudes of the salt AgCl from water to the solvents acetonitrile, propylene carbonate, dimethylformamide, ethanol, and methanol. The resulting values are used to further develop the consistent unified redox potential scale Eabs H2O that now allows to assess and compare redox potentials in and over six different solvents. We elaborate on its implications.

4.
J Chromatogr A ; 1666: 462850, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35131517

ABSTRACT

This work explores the effects of three selected fluoroalcohols - 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), 1,1,1,3,3,3-hexafluorotert­butyl alcohol (HFTB) and hexafluoro-2,3-(trifluoromethyl)-2,3-butanediol (PP) as novel eluent additives and their effect on the retention of basic and acidic analytes, using a reversed phase (RP) column with a fluorophenyl (PFP) stationary phase. In order to observe the changes in the model analytes' retention, chromatograms were obtained at multiple (5.0; 6.0; 7.0; 8.5; 9.0 and 9.5) pH values depending on the eluent. The retention observed with fluoroalcohols was compared with that of a conventional eluent additive - ammonium acetate. When fluoroalcohols were used as eluent additives, a decrease in the retention factors (compared with ammonium acetate) was generally observed for strong acids. The retention factors of strong bases were generally higher when using HFIP and HFTB as eluent additives. The behaviour of weak bases and weak acids was more nuanced, potentially enabling interesting selectivity. The extent of the effect regarding different fluoroalcohols also varied, with HFIP and HFTB having a more significant effect on the retention of analytes than PP. The retention data were interpreted in terms of the hypothesis that four interactions are at play: (a) hydrophobic retention typical to RP; (b) π-π interactions between the analytes containing an aromatic ring and the aromatic rings on the stationary phase; (c) charge-charge or hydrogen bond interactions between the analytes and partially deprotonated fluoroalcohols adsorbed on the stationary phase and (d) a hydrogen bond or charge-charge interaction between the free silanol groups or their deprotonated forms on the stationary phase and the analytes (either neutral or ionic). Alternative selectivity obtained through fluoroalcohols on the PFP stationary phase was compared with the C18 and biphenyl stationary phases. It was demonstrated that at the same eluent pH but with a different buffer system and/or different RP stationary phases, very different selectivity and retention order can be obtained.


Subject(s)
Acids , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions
5.
Anal Chim Acta ; 1182: 338923, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34602195

ABSTRACT

The use of the unified pH concept, [Formula: see text] , applicable to aqueous and non-aqueous solutions, which allows interpreting and comparison of the acidity of different types of solutions, requires reliable and objective determination. The [Formula: see text] can be determined by a single differential potentiometry measurement referenced to an aqueous reference buffer or by a ladder of differential potentiometric measurements that allows minimisation of inconsistencies of various determinations. This work describes and assesses bottom-up evaluations of the uncertainty of these measurements, where uncertainty components are combined by the Monte Carlo Method (MCM) or Taylor Series Approximation (TSM). The MCM allows a detailed simulation of the measurements, including an iterative process involving in minimising ladder deviations. On the other hand, the TSM requires the approximate determination of minimisation uncertainty. The uncertainty evaluation was successfully applied to measuring aqueous buffers with pH of 2.00, 4.00, 7.00, and 10.00, with a standard uncertainty of 0.01. The reference and estimated values from both approaches are metrologically compatible for a 95% confidence level even when a negligible contribution of liquid junction potential uncertainty is assumed. The MCM estimated pH values with an expanded uncertainty, for the 95% confidence level, between 0.26 and 0.51, depending on the pH value and ladder inconsistencies. The minimisation uncertainty is negligible or responsible for up to 87% of the measurement uncertainty. The TSM quantified measurement uncertainties on average only 0.05 units larger than the MCM estimated ones. Additional experimental tests should be performed to test these uncertainty models for analysis performed in other laboratories and on non-aqueous solutions.


Subject(s)
Uncertainty , Computer Simulation , Monte Carlo Method
6.
Sensors (Basel) ; 21(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200436

ABSTRACT

Measurement of pH in aqueous-organic mixtures with different compositions is of high importance in science and technology, but it is, at the same time, challenging both from a conceptual and practical standpoint. A big part of the difficulty comes from the fundamental incomparability of conventional pH values between solvents (spH, solvent-specific scales). The recent introduction of the unified pH (pHabs) concept opens up the possibility of measuring pH, expressed as pHabsH2O, in a way that is comparable between solvent, and, thereby, removing the conceptual problem. However, practical issues remain. This work presents the experience of the authors with measuring pHabsH2O values in mixtures of methanol, ethanol, and acetonitrile, with water, but without the presence of buffers or other additives. The aim was to assigned pHabsH2O values to solvent-water mixtures using differential potentiometry and the 'pHabs-ladder' method. Measurements were made of the potential difference between glass electrodes immersed in different solutions, separated by an ionic liquid salt bridge. Data were acquired for a series of solutions of varying solvent content. This work includes experiences related to: a selection of commercial electrodes, purity of starting material, and comparability between laboratories. Ranges of pHabsH2O values for selected compositions of solvent-water mixtures are presented.


Subject(s)
Methanol , Water , Acetonitriles , Ethanol , Hydrogen-Ion Concentration , Solvents
7.
J Biol Chem ; 294(5): 1516-1528, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30514757

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides in the presence of an external electron donor (reductant). In the classical O2-driven monooxygenase reaction, the reductant is needed in stoichiometric amounts. In a recently discovered, more efficient H2O2-driven reaction, the reductant would be needed only for the initial reduction (priming) of the LPMO to its catalytically active Cu(I) form. However, the influence of the reductant on reducing the LPMO or on H2O2 production in the reaction remains undefined. Here, we conducted a detailed kinetic characterization to investigate how the reductant affects H2O2-driven degradation of 14C-labeled chitin by a bacterial LPMO, SmLPMO10A (formerly CBP21). Sensitive detection of 14C-labeled products and careful experimental set-ups enabled discrimination between the effects of the reductant on LPMO priming and other effects, in particular enzyme-independent production of H2O2 through reactions with O2 When supplied with H2O2, SmLPMO10A catalyzed 18 oxidative cleavages per molecule of ascorbic acid, suggesting a "priming reduction" reaction. The dependence of initial rates of chitin degradation on reductant concentration followed hyperbolic saturation kinetics, and differences between the reductants were manifested in large variations in their half-saturating concentrations (KmRapp). Theoretical analyses revealed that KmRapp decreases with a decreasing rate of polysaccharide-independent LPMO reoxidation (by either O2 or H2O2). We conclude that the efficiency of LPMO priming depends on the relative contributions of reductant reactivity, on the LPMO's polysaccharide monooxygenase/peroxygenase and reductant oxidase/peroxidase activities, and on reaction conditions, such as O2, H2O2, and polysaccharide concentrations.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/metabolism , Chitin/metabolism , Hydrogen Peroxide/pharmacology , Mixed Function Oxygenases/metabolism , Polysaccharides, Bacterial/metabolism , Reducing Agents/pharmacology , Kinetics , Oxidants/pharmacology , Oxidation-Reduction , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...