Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Test Anal ; 13(5): 1054-1067, 2021 May.
Article in English | MEDLINE | ID: mdl-33354929

ABSTRACT

Handheld Raman spectroscopy is an emerging technique for rapid on-site detection of drugs of abuse. Most devices are developed for on-scene operation with a user interface that only shows whether cocaine has been detected. Extensive validation studies are unavailable, and so are typically the insight in raw spectral data and the identification criteria. This work evaluates the performance of a commercial handheld Raman spectrometer for cocaine detection based on (i) its performance on 0-100 wt% binary cocaine mixtures, (ii) retrospective comparison of 3,168 case samples from 2015 to 2020 analyzed by both gas chromatography-mass spectrometry (GC-MS) and Raman, (iii) assessment of spectral selectivity, and (iv) comparison of the instrument's on-screen results with combined partial least square regression (PLS-R) and discriminant analysis (PLS-DA) models. The limit of detection was dependent on sample composition and varied between 10 wt% and 40 wt% cocaine. Because the average cocaine content in street samples is well above this limit, a 97.5% true positive rate was observed in case samples. No cocaine false positives were reported, although 12.5% of the negative samples were initially reported as inconclusive by the built-in software. The spectral assessment showed high selectivity for Raman peaks at 1,712 (cocaine base) and 1,716 cm-1 (cocaine HCl). Combined PLS-R and PLS-DA models using these features confirmed and further improved instrument performance. This study scientifically assessed the performance of a commercial Raman spectrometer, providing useful insight on its applicability for both presumptive detection and legally valid evidence of cocaine presence for law enforcement.


Subject(s)
Central Nervous System Stimulants/analysis , Cocaine/analysis , Law Enforcement , Spectrum Analysis, Raman/instrumentation , Feasibility Studies , Gas Chromatography-Mass Spectrometry , Humans , Limit of Detection , Reproducibility of Results , Retrospective Studies
2.
Anal Chem ; 92(19): 13485-13492, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32786496

ABSTRACT

Herein, a straightforward electrochemical approach for the determination of ketamine in street samples and seizures is presented by employing screen-printed electrodes (SPE). Square wave voltammetry (SWV) is used to study the electrochemical behavior of the illicit drug, thus profiling the different oxidation states of the substance at different pHs. Besides, the oxidation pathway of ketamine on SPE is investigated for the first time with liquid chromatography-high-resolution mass spectrometry. Under the optimized conditions, the calibration curve of ketamine at buffer solution (pH 12) exhibits a sensitivity of 8.2 µA µM-1, a linear relationship between 50 and 2500 µM with excellent reproducibility (RSD = 2.2%, at 500 µM, n = 7), and a limit of detection (LOD) of 11.7 µM. Subsequently, binary mixtures of ketamine with adulterants and illicit drugs are analyzed with SWV to investigate the electrochemical fingerprint. Moreover, the profile overlapping between different substances is addressed by the introduction of an electrode pretreatment and the integration of a tailor-made script for data treatment. Finally, the approach is tested on street samples from forensic seizures. Overall, this system allows for the on-site identification of ketamine by law enforcement agents in an easy-to-use and rapid manner on cargos and seizures, thereby disrupting the distribution channel and avoiding the illicit drug reaching the end-user.


Subject(s)
Electrochemical Techniques , Ketamine/analysis , Calibration , Chromatography, Liquid , Electrodes , Mass Spectrometry , Particle Size
3.
Drug Test Anal ; 12(10): 1404-1418, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32638519

ABSTRACT

On-scene drug detection is an increasingly significant challenge due to the fast-changing drug market as well as the risk of exposure to potent drug substances. Conventional colorimetric cocaine tests involve handling of the unknown material and are prone to false-positive reactions on common pharmaceuticals used as cutting agents. This study demonstrates the novel application of 740-1070 nm small-wavelength-range near-infrared (NIR) spectroscopy to confidently detect cocaine in case samples. Multistage machine learning algorithms are used to exploit the limited spectral features and predict not only the presence of cocaine but also the concentration and sample composition. A model based on more than 10,000 spectra from case samples yielded 97% true-positive and 98% true-negative results. The practical applicability is shown in more than 100 case samples not included in the model design. One of the most exciting aspects of this on-scene approach is that the model can almost instantly adapt to changes in the illicit-drug market by updating metadata with results from subsequent confirmatory laboratory analyses. These results demonstrate that advanced machine learning strategies applied on limited-range NIR spectra from economic handheld sensors can be a valuable procedure for rapid on-site detection of illicit substances by investigating officers. In addition to forensics, this interesting approach could be beneficial for screening and classification applications in the pharmaceutical, food-safety, and environmental domains.


Subject(s)
Cocaine/analysis , Dopamine Uptake Inhibitors/analysis , Illicit Drugs/analysis , Spectroscopy, Near-Infrared/methods , Algorithms , Humans , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...