Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Interface Focus ; 14(2): 20230056, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618235

ABSTRACT

Mandible morphology has an essential role in biting performance, but the mandible cuticle can have regional differences in its mechanical properties. The effects of such a heterogeneous distribution of cuticle material properties in the mandible responses to biting loading are still poorly explored in chewing insects. Here, we tested the mechanical properties of mandibles of the ant species Formica cunicularia by nanoindentation and investigated the effects of the cuticular variation in Young's modulus (E) under bite loading with finite-element analysis (FEA). The masticatory margin of the mandible, which interacts with the food, was the hardest and stiffest region. To unravel the origins of the mechanical property gradients, we characterized the elemental composition by energy-dispersive X-ray spectroscopy. The masticatory margin possessed high proportions of Cu and Zn. When incorporated into the FEA, variation in E effectively changed mandible stress patterns, leading to a relatively higher concentration of stresses in the stiffer mandibular regions and leaving the softer mandible blade with relatively lower stress. Our results demonstrated the relevance of cuticle E heterogeneity in mandibles under bite loading, suggesting that the accumulation of transition metals such as Cu and Zn has a relevant correlation with the mechanical characteristics in F. cunicularia mandibles.

2.
iScience ; 27(4): 109441, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38523795

ABSTRACT

Insect physiology and reproduction depend on several terpenoid compounds, whose biosynthesis is mainly unknown. One enigmatic group of insect monoterpenoids are mealybug sex pheromones, presumably resulting from the irregular coupling activity of unidentified isoprenyl diphosphate synthases (IDSs). Here, we performed a comprehensive search for IDS coding sequences of the pest mealybug Planococcus citri. We queried the available genomic and newly generated short- and long-read P. citri transcriptomic data and identified 18 putative IDS genes, whose phylogenetic analysis indicates several gene family expansion events. In vitro testing confirmed regular short-chain coupling activity with five gene products. With the candidate with highest IDS activity, we also detected low amounts of irregular coupling products, and determined amino acid residues important for chain-length preference and irregular coupling activity. This work therefore provides an important foundation for deciphering terpenoid biosynthesis in mealybugs, including the sex pheromone biosynthesis in P. citri.

3.
Exp Appl Acarol ; 83(3): 343-373, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33559807

ABSTRACT

Intensive land use has been shown to alter the composition and functioning of soil communities. Due to their low dispersal ability, oribatid mites are particularly vulnerable to land-use intensification and species which are not adjusted to management-related disturbances become less abundant. We investigated how different land-use parameters in forests and grasslands affect oribatid mite diversity and abundance, with a focus on: (1) species-level impacts, by classifying species as increasing ('winners') or decreasing ('losers') in abundance with higher land-use intensity, and (2) reproductive impact, by investigating whether sexual and parthenogenetic species react differently. We collected 32,542 adult oribatid mites in 60 forests and grasslands of known land-use intensity in two regions of Germany. Diversity and total abundance as well as the proportion of sexual species were higher in forests than in grasslands. Diversity declined with higher land-use intensity in forests, but increased with higher mowing and fertilization in grasslands. Depending on land-use parameter and region, abundance either declined or remained unaffected by increasing intensity. Gravidity was higher in sexual than in parthenogenetic species and sexuals had 1.6× more eggs per gravid female. Proportions of sexual species and gravid females decreased with land-use intensity in forests, but increased with mowing in grasslands. At the species level, 75% of sexuals and 87.5% of parthenogens were 'losers' of higher percentages of dead wood originating from management-related disturbances. Across land-use parameters and habitats, a similar proportion of sexual and parthenogenetic oribatid mite species were 'losers' of high land-use intensity. However, 'winner' species were more common among sexuals.


Subject(s)
Mites , Animals , Biodiversity , Female , Forests , Germany , Grassland , Parthenogenesis
4.
Nat Commun ; 11(1): 5577, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149150

ABSTRACT

We present Biomedisa, a free and easy-to-use open-source online platform developed for semi-automatic segmentation of large volumetric images. The segmentation is based on a smart interpolation of sparsely pre-segmented slices taking into account the complete underlying image data. Biomedisa is particularly valuable when little a priori knowledge is available, e.g. for the dense annotation of the training data for a deep neural network. The platform is accessible through a web browser and requires no complex and tedious configuration of software and model parameters, thus addressing the needs of scientists without substantial computational expertise. We demonstrate that Biomedisa can drastically reduce both the time and human effort required to segment large images. It achieves a significant improvement over the conventional approach of densely pre-segmented slices with subsequent morphological interpolation as well as compared to segmentation tools that also consider the underlying image data. Biomedisa can be used for different 3D imaging modalities and various biomedical applications.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Algorithms , Animals , Datasets as Topic , Heart/diagnostic imaging , Humans , Mice , Neural Networks, Computer , Oryzias , Software , Tomography, X-Ray Computed , Tooth/diagnostic imaging , Uncertainty , Weevils
5.
J Chem Ecol ; 46(10): 947-955, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32875537

ABSTRACT

Temperature influences all biochemical and biophysiological processes within an organism. By extension, it also affects those ecological interactions that are mediated by gland-produced chemical compounds, such as reservoir-based chemical defense. Herein, we investigate how environmental temperature affects the regeneration of defensive secretions and influences the efficacy of chemical defense in a model predator-prey system: the oribatid mite Archegozetes longisetosus and the predaceous rove beetle Stenus juno. Through a combination of chemical analyses, non-linear regression modeling and theoretical simulations we show that the amount of defensive secretion responded to temperature in a unimodal optimum curve: the regeneration rate followed a positive, linear relationship up to 35 °C, but rapidly broke down beyond this temperature ("tipping point" effect). Using functional response simulations, there is an initially positive dampening effect on the predation rate when regeneration is optimal, but at higher temperatures chemical defense does not counteract the previously described effects of elevated predatory pressure. In a larger context, our results demonstrate the need to integrate relevant environmental factors in predator-prey modeling approaches.


Subject(s)
Coleoptera/physiology , Mites/physiology , Predatory Behavior/physiology , Temperature , Animals , Computer Simulation , Food Chain , Models, Biological
6.
Proc Biol Sci ; 287(1934): 20201429, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32873199

ABSTRACT

The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route-the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic compounds in defence secretions of the oribatid mite Archegozetes longisetosus. Exposing the mites to a diet containing high concentrations of antibiotics removed potential microbial partners but did not affect the production of defensive benzenoids. To gain insights into benzenoid biosynthesis, we fed mites with stable-isotope labelled precursors and monitored incorporation with mass spectrometry. Glucose, malonic acid and acetate, but not phenylalanine, were incorporated into the benzenoids, further evidencing autogenous biosynthesis. Whole-transcriptome sequencing with hidden Markov model profile search of protein domain families and subsequent phylogenetic analysis revealed a putative PKS domain similar to an actinobacterial PKS, possibly indicating a horizontal gene transfer.


Subject(s)
Mites/physiology , Animals , Arthropods/enzymology , Arthropods/metabolism , Fungi , Organic Chemicals , Polyketide Synthases/metabolism , Symbiosis
7.
Zookeys ; 948: 75-105, 2020.
Article in English | MEDLINE | ID: mdl-32765172

ABSTRACT

One of the largest species in its genus, Odontomachus davidsoni Hoenle, Lattke & Donoso, sp. nov. is described from workers and queens collected at lowland forests in the Chocó-Darién bioregion in coastal Ecuador. The workers are characterized by their uniform red coloration, their large size (16-18 mm body length), and their frontal head striation that reaches the occipital margin. DNA barcodes (COI) and high resolution 2D images of the type material are provided, as well as an updated key for the Neotropical species of Odontomachus. In addition, a three-dimensional digital model of the worker holotype and a paratype queen scanned with DISC3D based on photogrammetry is presented, for the first time in a species description. Findings of large and conspicuous new species are uncommon around the world and suggest that these Ecuadorian rainforests may conceal many more natural treasures that deserve conservation.


ResumenDescribimos una especie nueva, entre las más grandes conocidas del género Odontomachus. La nueva especie, Odontomachus davidsoni Hoenle, Lattke & Donoso, sp. nov., es descrita a partir de obreras y reinas recolectadas en bosques de tierras bajas en la bioregión Chocó-Darién de la costa del Ecuador. Las obreras se caracterizan por su coloración rojiza uniforme, su grande tamaño (largo del cuerpo 16­18 mm), y la estriación del frente cefálico que alcanza el margen occipital. Proveemos códigos de barras de DNA (COI) e imágenes 2D de alta resolución para el material tipo y así como una guía de identificación actualizada para las especies neotropicales del género Odontomachus. Por primera vez en una descripción de especies, se proveen imágenes 3D de un escáner fotogramétrico DISC3D. Los hallazgos de especies grandes y conspicuas son poco comunes alrededor del mundo y sugieren que estos bosques lluviosos ecuatorianos pueden contener muchos más tesoros naturales que merecen ser conservados.

8.
Exp Appl Acarol ; 81(4): 483-494, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32748182

ABSTRACT

The fatty acid (FA) composition of lipids in animals is influenced by factors such as species, life stage, availability and type of food, as well as the ability to synthesize certain FAs de novo. We investigated the effect of starvation on the neutral lipid (NLFA) and phospholipid (PLFA) fatty acid patterns of the oribatid mite Archegozetes longisetosus Aoki. Furthermore, we performed stable-isotope labeled precursors feeding experiments under axenic conditions to delineate de novo FA synthesis by profiling 13C and deuterium incorporation via single-ion monitoring. Starvation of mites resulted in a decline in the total amount of NLFAs and significantly changed the fatty acid patterns, indicating that NLFAs were metabolized selectively. Biochemical tracer experiments confirmed that oribatid mites, like other animals, can produce stearic (18:0) and oleic acid (18:1ω9) de novo. Mass spectrometric data also revealed that they appear to synthesize linoleic acid [18:2ω6,9 = (9Z,12Z)-octadeca-9,12-dienoic acid]-an ability restricted only to a few arthropod taxa, including astigmatid mites. The physiological and biosynthesis processes revealed here are crucial to understand the potential biomarker function of fatty acids-especially 18:2ω6,9-in oribatid mites and their applicability in soil animal food web studies.


Subject(s)
Fatty Acids/metabolism , Mites/metabolism , Starvation , Animals , Food Chain , Soil
9.
Front Zool ; 15: 50, 2018.
Article in English | MEDLINE | ID: mdl-30534185

ABSTRACT

BACKGROUND: Trait based functional and community ecology is en vogue. Most studies, however, ignore phenotypical diversity by characterizing entire species considering only trait means rather than their variability. Phenotypical variability may arise from genotypical differences or from ecological factors (e.g., nutritionally imbalanced diet), and these causes can usually not be separated in natural populations. We used a single genotype from a parthenogenetic model system (the oribatid mite Archegozetes longisetosus Aoki) to exclude genotypical differences. We investigated patterns of dietary (10 different food treatments) induced trait variation by measuring the response of nine different traits (relating to life history, morphology or exocrine gland chemistry). RESULTS: Nutritional quality (approximated by carbon-to-nitrogen ratios) influenced all trait means and their variation. Some traits were more prone to variation than others. Furthermore, the "threshold elemental ratio"- rule of element stoichiometry applied to phenotypic trait variation. Imbalanced food (i.e. food not able to fully meet the nutritional demands of an animal) led to lower trait mean values, but also to a higher variation of traits. CONCLUSION: Imbalanced food led not only to lower trait value averages, but also to higher trait variability. There was a negative relationship between both parameters, indicating a direct link of both, average trait levels and trait variation to nutritional quality. Hence, variation of trait means may be a predictor for general food quality, and further indicate trade-offs in specific traits an animal must deal with while feeding on imbalanced diets.

10.
PeerJ ; 6: e5467, 2018.
Article in English | MEDLINE | ID: mdl-30155364

ABSTRACT

BACKGROUND: The use and partitioning of trophic resources is a central aspect of community function. On the ground of tropical forests, dozens of ant species may be found together and ecological mechanisms should act to allow such coexistence. One hypothesis states that niche specialization is higher in the tropics, compared to temperate regions. However, trophic niches of most species are virtually unknown. Several techniques might be combined to study trophic niche, such as field observations, fatty acid analysis (FAA) and stable isotope analysis (SIA). In this work, we combine these three techniques to unveil partitioning of trophic resources in a tropical and a temperate community. We describe patterns of resource use, compare them between communities, and test correlation and complementarity of methods to unveil both community patterns and species' niches. METHODS: Resource use was assessed with seven kinds of bait representing natural resources available to ants. Neutral lipid fatty acid (NLFA) profiles, and δ15N and δ13C isotope signatures of the species were also obtained. Community patterns and comparisons were analyzed with clustering, correlations, multivariate analyses and interaction networks. RESULTS: Resource use structure was similar in both communities. Niche breadths (H') and network metrics (Q and H2') indicated similar levels of generalization between communities. A few species presented more specialized niches, such as Wasmannia auropunctata and Lasius fuliginosus. Stable isotope signatures and NLFA profiles also indicated high generalization, although the latter differed between communities, with temperate species having higher amounts of fat and proportions of C18:1n9. Bait use and NLFA profile similarities were correlated, as well as species' specialization indices (d') for the two methods. Similarities in δ15N and bait use, and in δ13C and NLFA profiles, were also correlated. DISCUSSION: Our results agree with the recent view that specialization levels do not change with latitude or species richness. Partition of trophic resources alone does not explain species coexistence in these communities, and might act together with behavioral and environmental mechanisms. Temperate species presented NLFA patterns distinct from tropical ones, which may be related to environmental factors. All methods corresponded in their characterization of species' niches to some extent, and were robust enough to detect differences even in highly generalized communities. However, their combination provides a more comprehensive picture of resource use, and it is particularly important to understand individual niches of species. FAA was applied here for the first time in ant ecology, and proved to be a valuable tool due to its combination of specificity and temporal representativeness. We propose that a framework combining field observations with chemical analysis is valuable to understand resource use in ant communities.

11.
PeerJ ; 6: e4863, 2018.
Article in English | MEDLINE | ID: mdl-29888124

ABSTRACT

Oribatid mites are abundant and diverse decomposers in almost all terrestrial microhabitats, especially in temperate forests. Although their functional importance in the decomposition system in these forests has been investigated, spatio-temporal patterns of oribatid mite communities inhabiting different microhabitats have largely been neglected. Therefore, we (i) investigated seasonal fluctuation (monthly over one year) in oribatid-mite community structure and specificity to three microhabitats (moss, dead wood and litter) and (ii) analyzed the influence of air temperature and overall air humidity on seasonal community changes. In total, 57,398 adult oribatid mite individuals were collected. Total abundance, species richness and diversity differed among microhabitats. Seasonal changes were most pronounced in moss and least in litter. While overall air humidity had no influence on species distribution and community changes, air temperature positively influenced species richness and diversity, again most pronounced in moss. The calculated environmental temperature occurrence niche showed that 35% of adult oribatid mite species occurred at higher air temperatures. Furthermore, interaction/bipartite networks were more generalized-i.e., species were more equally distributed among moss, dead wood and litter-when ambient air temperatures were higher. This pattern is probably due to the dispersal ability of adult oribatid mites, i.e., species enter a dispersal mode only at higher air temperatures.

12.
Zookeys ; (759): 1-27, 2018.
Article in English | MEDLINE | ID: mdl-29853774

ABSTRACT

Digitization of natural history collections is a major challenge in archiving biodiversity. In recent years, several approaches have emerged, allowing either automated digitization, extended depth of field (EDOF) or multi-view imaging of insects. Here, we present DISC3D: a new digitization device for pinned insects and other small objects that combines all these aspects. A PC and a microcontroller board control the device. It features a sample holder on a motorized two-axis gimbal, allowing the specimens to be imaged from virtually any view. Ambient, mostly reflection-free illumination is ascertained by two LED-stripes circularly installed in two hemispherical white-coated domes (front-light and back-light). The device is equipped with an industrial camera and a compact macro lens, mounted on a motorized macro rail. EDOF images are calculated from an image stack using a novel calibrated scaling algorithm that meets the requirements of the pinhole camera model (a unique central perspective). The images can be used to generate a calibrated and real color texturized 3Dmodel by 'structure from motion' with a visibility consistent mesh generation. Such models are ideal for obtaining morphometric measurement data in 1D, 2D and 3D, thereby opening new opportunities for trait-based research in taxonomy, phylogeny, eco-physiology, and functional ecology.

14.
Pedobiologia (Jena) ; 63: 1-7, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29129942

ABSTRACT

The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia - Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia.The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise.

15.
Sci Rep ; 7(1): 12141, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28939910

ABSTRACT

At the basis of a trophic web, coprophagous animals like dung beetles (Scarabaeoidea) utilize resources that may have advantages (easy gain and handling) as well as drawbacks (formerly processed food). Several studies have characterized the nutrients, e.g. C/N ratios and organic matter content, for specific types of dung. However, a comparative approach across dung types and feeding guilds of dung producers, and relationships between dung nutrients and preferences by coprophages, have been missing. Hence, we analyzed water content, C/N ratio, amino acid, neutral lipid fatty acid, free fatty acid and sterol composition and concentrations in dung from 23 vertebrates, including carnivore, omnivore and herbivore species. Our analyses revealed significant differences among the three vertebrate feeding guilds for most nutritional parameters. Although formerly processed, dung grants sufficient amounts of essential nutrients for insects. We tested whether nutrients can explain the dung beetles' preferences in a field experiment, using 12 representative dung types in baits that were installed in 27 forests and 27 grasslands. Although consistent preferences for specific dung types were pronounced, the nutritional composition did not predict the variation in attractiveness of these dung diets, suggesting a primary role of dung volatiles irrespective of food quality.


Subject(s)
Coleoptera/physiology , Feeding Behavior , Manure/analysis , Nutrients/analysis , Amino Acids/analysis , Animal Nutritional Physiological Phenomena , Animals , Lipids/analysis , Sterols/analysis , Water/analysis
16.
Front Zool ; 14: 36, 2017.
Article in English | MEDLINE | ID: mdl-28717381

ABSTRACT

BACKGROUND: Trophic interactions are a fundamental aspect of ecosystem functioning, but often difficult to observe directly. Several indirect techniques, such as fatty acid analysis, were developed to assess these interactions. Fatty acid profiles may indicate dietary differences, while individual fatty acids can be used as biomarkers. Ants are among the most important terrestrial animal groups, but little is known about their lipid metabolism, and no study so far used fatty acids to study their trophic ecology. We set up a feeding experiment with high- and low-fat food to elucidate patterns and dynamics of neutral lipid fatty acids (NLFAs) assimilation in ants. We asked whether dietary fatty acids are assimilated through direct trophic transfer, how diet influences NLFA total amounts and patterns over time, and whether these assimilation processes are similar across species and life stages. RESULTS: Ants fed with high-fat food quickly accumulated specific dietary fatty acids (C18:2n6, C18:3n3 and C18:3n6), compared to ants fed with low-fat food. Dietary fat content did not affect total body fat of workers or amounts of fatty acids extensively biosynthesized by animals (C16:0, C18:0, C18:1n9). Larval development had a strong effect on the composition and amounts of C16:0, C18:0 and C18:1n9. NLFA compositions reflected dietary differences, which became more pronounced over time. Assimilation of specific dietary NLFAs was similar regardless of species or life stage, but these factors affected dynamics of other NLFAs, composition and total fat. CONCLUSIONS: We showed that ants accumulated certain dietary fatty acids via direct trophic transfer. Fat content of the diet had no effect on lipids stored by ants, which were able to synthesize high amounts of NLFAs from a sugar-based diet. Nevertheless, dietary NLFAs had a strong effect on metabolic dynamics and profiles. Fatty acids are a useful tool to study trophic biology of ants, and could be applied in an ecological context, although factors that affect NLFA patterns should be taken into account. Further studies should address which NLFAs can be used as biomarkers in natural ant communities, and how factors other than diet affect fatty acid dynamics and composition of species with distinct life histories.

17.
PLoS One ; 12(4): e0175001, 2017.
Article in English | MEDLINE | ID: mdl-28384308

ABSTRACT

Long-chain cuticular hydrocarbons (CHCs) are common components of the epicuticle of terrestrial arthropods. CHC serve as a protective barrier against environmental influences but also act as semiochemicals in animal communication. Regarding the latter aspect, species- or intra-functional group specific CHCs composition and variation are relatively well studied. However, comparative knowledge about the relationship of CHC quantity and their relation to surface area-volume ratios in the context of water loss and protection is fragmentary. Hence, we aim to study the taxon-specific relationship of the CHC amount and surface-area to volume ratio related to their functional role (e.g. in water loss). We focused on flower visiting insects and analyzed the CHC amounts of three insect orders (Hymenoptera, Lepidoptera and Diptera) using gas chromatography-mass spectrometry (GC-MS). We included 113 species from two grassland plots, quantified their CHCs, and measured their body mass and surface area. We found differences in the surface area, CHCs per body mass and the CHC density (= amount of CHCs per surface area) across the three insect taxa. Especially the Hymenoptera had a higher CHC density compared to Diptera and Lepidoptera. CHC density could be explained by surface area-volume ratios in Hymenoptera but not in Diptera and Lepidoptera. Unexpectedly, CHC density decreased with increasing surface area-volume ratios.


Subject(s)
Diptera/metabolism , Hydrocarbons/metabolism , Hymenoptera/metabolism , Lepidoptera/metabolism , Animals , Gas Chromatography-Mass Spectrometry
18.
Proc Natl Acad Sci U S A ; 114(13): 3469-3472, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28289203

ABSTRACT

Cyanogenesis denotes a chemical defensive strategy where hydrogen cyanide (HCN, hydrocyanic or prussic acid) is produced, stored, and released toward an attacking enemy. The high toxicity and volatility of HCN requires both chemical stabilization for storage and prevention of accidental self-poisoning. The few known cyanogenic animals are exclusively mandibulate arthropods (certain myriapods and insects) that store HCN as cyanogenic glycosides, lipids, or cyanohydrins. Here, we show that cyanogenesis has also evolved in the speciose Chelicerata. The oribatid mite Oribatula tibialis uses the cyanogenic aromatic ester mandelonitrile hexanoate (MNH) for HCN storage, which degrades via two different pathways, both of which release HCN. MNH is emitted from exocrine opisthonotal oil glands, which are potent organs for chemical defense in most oribatid mites.


Subject(s)
Hydrogen Cyanide/metabolism , Mites/metabolism , Animals , Behavior, Animal , Biological Transport , Female , Hydrogen Cyanide/chemistry , Male , Mites/chemistry , Molecular Structure
19.
Insect Sci ; 24(5): 829-841, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27234132

ABSTRACT

Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity.


Subject(s)
Body Surface Area , Insecta/anatomy & histology , Animals , Imaging, Three-Dimensional , Water Loss, Insensible
SELECTION OF CITATIONS
SEARCH DETAIL
...